
c: Copy 4.3 0 113 oopl18

IDA PAPER P-1788

DoD RELATED SOFTWARE TECHNOLOGY
$L3 REQUIREMENTS, PRACTICES, AND PROSPECTS

FOR THE FUTURE

Samuel T. Redwine, Jr.
Louise Giovane Becker

Ann B. Marmor-Squires 0
R. J. Martin

Sarah H. Nash
William E. Riddle

DTIC
June A984 E LE4TE

SEP 19 I

< B
C,3a

Prepared for

Office of the Under Secretary of Defense for Research and Engineering

DItRIUON SITJETMENT A

Approved for publicxea I'suS
l a | L tuib .. Un iudtd .

INSTITUTE FOR DEFENSE ANALYSES

84 013, IDA Log No. HO 84-28841

The work reported In this document was conducted under contract
MDA 903 84 C 0031 for the Department of Defense. The publication
of this IDA Paper does not Indicate endorsement by the Department
of Defense, nor should the contents be construed as reflecting the
official position of that agency. L

Approved for public release; distribution unlimited.

-

- r

7-

89~r.111TV CLASSIFICATION OF THIS PAGES (Min, DOse ftfor

REPORT DOCUMENTATION PAGE RZAV ESTRCuco0s

-- -. R"PORT NUN M ' '.GOV" ACCRSION NO. 3. RUCIPOE.T'S CATALOG NUMNSE

_. T4T.1 , (andSie.) S. Type Or lepORT a PeRIOD COVEFRO E

DoD Related Software Technology Require- FINAL, Feb 84 - June 84
ments, Practices, and Prospects for the
Future S. pERFootNu otG. REPORT wumuMaIDA Paeer P-1788

_-Samuel T. Redwine, Jr., Louise Giovane •
Becker, Ann B. Marmor-Squires, R.J. Marti MDA 903 84 C 0031
Sarah H. Nash, William E. Riddle

I. PRFOORNIMO ORGAMIZATION MANS AND AODRSS tO. PRORAMLEMENT, PR1OJECT, TASK

Institute for Defense Analyses AMEAiWOI(UNiT NUNAERS

1801 N. Beauregard Street Task T-4-236
Alexandria, VA 22311

11. CONTIOLLING OPFICI MANI ANO A0REISS II. REfltPORT OATE

STARS Joint Program Office June 1984
400 Army-Navy Drive, 9th Floor 1s.u MUmznSOF PAGeS
Arlington, VA 22202 351

14. MONITORING AG9NCY NAME & ADORI n II 4 .111 ,1 I,.. ContrlIf* 0110c) 1$. SECURITY CLAS& (o.f Cic F,•, t)
DoD-IDA Management Office
1801 N. Beauregard Street UNCLASSIFIED
Alexandria, VA 22311 46 C CATIOowNoINo

-- -____NA
lI OISTRINUTION STATEMINT (of itale R•p..V

-lApproved for public release; distribution unlimited.

17. OISTRISUTION STATIZEENT (of Cho I aoac oimod In S.toc 20. IIIt dIffr, I from Rp..e)

I& SUPPLEME1191N4TARY NOTES

IS. Key WORDS (Contimie an rovcee od*e It node..ey w IgonsitP by blipof numbw)
computer programs; computer program reliability; computer program
verification; military requirements; state of the art; computer
programming; technology transfer; long range (time); military

nl planning; software development

SO. AIISTRACT (Cowtiau we revers .id of vwasaso' OWd EdfteH~r b No" vStlekbe

This study investigates future DoD software requi.rements,
__ current practices and approaches to software development, and the

time it takes a software technology innovation to become widely
mn used; and offers a glimpse of future possibilities in software

technology. A

DO I JAN -Ja I73 EDTOs OF m Ms is ossaLETE

SiCURITY CLASSIICATION OF liIS PAGE (IWRM DAets mEwre) -0

1 .

7-77

IDA PAPER P-1788

I DoD RELATED SOFTWARE TECHNOLOGY

REQUIREMENTS, PRACTICES, AND PROSPECTS
FOR THE FUTURE

Samuel T. Redwine, Jr.
Louise Giovane Becker

Ann B. Marmor-Squires
R. J. Martin

Sarah H. Nash
William E. Riddle

June 1984

"L

I- IDA
INSTITUTE FOR DEFENSE ANALYSES

1801 N. Beauregard Street, Alexandria, Virginia 22311

Contract MDA 903 84 C 0031
Task T-4-236

FODENORD

This study is largely concerned with concrete examples and

descriptions of DoD requirements and software technology.

*Except in drawing conclusions, we have tried to avoid the use of

subjective expert judgement and high-level abstractions--not
Mr because these are bad but because the many prior studies in this

area have generally followed that approach. Partially in the

* hope of communicating better, we have aimed at collecting and
recording less subjective and less abstract descriptions of the

areas covered.

The report is intended to supply data and background for

those preparing material for Government decision makers, but

should be of interest to all who have a significant interest In
the Department of Defense (DoD) and software. It is concerned
with assessing the state of the world and DoD plans; it does not

try to formulate detailed solutions to the problems found. The

report is concerned with the role of software in DoD's future

plans and does not address larger issues such as the merit of

these plans or non-DoD related issues such as the foreign

efforts aimed at economic competition in computing and software.

The Executive gummary and the material in Chapters It III

im I L

and VI --Introduction, Future Requirements, and Conclusions -

should be accessible to everyone. Chapter III on the current

DoD-related software state of practice is reasonably accessible

but requires some knowledge of software practices for full

understanding. Chapter IV on the maturing of software

technologies is also reasondbly accessible but is enhanced if
the reader has some knowledge of advanced software technology.

Chapter V with examples of immature software technologies
requires significant software knowledge for full appreciation.

•m m dii

- -.

'--
.

ACXNOWLEDQ4=TS

The authors are indebted to a number of people for their
help on this study. Vance Mall, Carol Morgan, and Ken Nidiffer
from the DoDp Betsy Bailey, Bill Carlson, and Tom Probert made
several productive suggestions in the planning and review
stages. Richard DeMillo and John Manley assisted in the
technical review process and contributed case studies to Chapter
IV. Other contributors of case studies to whom the authors are
grateful are John Bailey, Paul C. Clements, and David Weiss. bow
Assistance provided by Intermetrics, Inc. is also greatly
appreciated. Special thanks go to Jo Ann Stilley, Charlene
Smith, Mary Lou Caldwell, Anthea DeVaughan, Zelma Camteron, Joyce
Tuggles, and Carol Powell for typing the manuscript. The .
authors wish to thank all others not mentioned here for their

.. technical reviews.

DTIC
ELECTE
SEP 19 1984STED IAccession For

-iTIS iQ GRA& or
DTIC TAB
Unannounced f
Justification

" **RE: Classified References, Distribution
Unlimited bution/
No change in distribution statement per Ms. oDi 'Ibution/

Availability CodesBetty Pringle, IDA Availand/oe•,] IAvail and/or,
Dist Special

iv

TABLE OF CONTWS

.-. i.-i oreword iii
Acknowledgments iv
Executive Summary ix

Chapter I Overview

A. FOCUS OF THE REPORT 1

- B. IMPORTANCE TO DOD OF SOFTWARE 2

C. CONTENT OF THE REPORT 7

S-REFERENCES 8

. .Chapter I1 - A Review of Defense Software Requirements

A. INTRODUCTION 9

1. objective and Purpose 9

2. Two Prior Studies 10

L B. FINDINGS AND ANALYSIS 13

1. Software Development Component of DoD Programs 13

2. Defense Long Range Plans 1

a. Army Futures Concepts 18
b. Air Force 2000 28
c. Focus 21 32
d. AFSC Vanguard Planning Summary 34
e. Navy Command and Control Plan 37
f. DTST Ballistic Missile Defense (BMD) 39

*C. SUMMARY 42

REFERENCES 44

v-. ..' I

"Chapter III Current State of Practice

A. INTRODUCTION 47

B. NATURE OF SOFTWARE DEVELOPMENT AND MAINTENANCE 48__

C. PROJECT CHARACTERIZATION 49

1. Project Overviews 49

2. Software Applications 50

3. Magnitude of Software Development Efforts 50

4. Software Development Life Cycles 53

D . PROJECT MANAGEMENT 53

1. Costs 54

2. Staffing 56

3. Milestones and Schedules 57

E.* PRE-SOFTWARE DEVELOPMENT 59-

1. Concept Deiiin60

2. Systems Requirements Definition 60

F. SOFIWARE REQUIREMENTS DEFINITION 61

G. DESIGN 63

H. CODING 66

I. INTEGRATION 68

"J. TESTING AND EVALUATION 69

K. CONFIGURATION CONTROL 72

"L. SOFTWARE SUPPORT ENVILONMENTS 74 A-

1. Hardware Support 74

2. Post Development Software Support 75

vi

M. SUMMARY 76

5 Chapter IV - Technology Case Studies

A. INTRODUCTION 81

B. TECHNOLOGIES INVESTIGATED 82

C. TECHNOLOGY MATURATION 84

D. GENERAL OBSERVATIONS 86

1. Major Technology Areas 92

2. Technology Concepts 92

3. Methodology Technology 93

4. Consolidated Technology 94

E. ACCELERATION OF TECHNOLOGY MATURATION 94

1. Critical Factors 95

2. Inhibitors 97

3. Facilitators 98

F. CONCLUSIONS 100

. REFERENCES 104

Chapter V- State of the Art

A. INTRODUCTION 107

B. DISCUSSION 111

vii

1. Methods ill

2. Testing Technology 113 It.

3. Static Analysis Techniques 114

4. Verification Techniques 115

5. Program Transformers 117 1

6. Pre-Implementation Modelling Notations 118

7. Measurement Technology 120

8. Compiler Generation Technology 121

9. Software Engineering Environments 123

10. Editors 125

11. Command Languages 126 P

C. CONDUCT OF THIS SURVEY 127

REFERENCES 129

Chapter VI - Conclusions 135

"APPENDICE.

A. Methodology
B. Programs Surveyed-Categorized
C. Bibliography of Long Range Plans
D. DoD Long Range Planning Offices Contacted
E. Analysis of Airland Battle 2000
F. Navy C2 Programmatic Action
G. Technology Case Studies

viii

• --- ---- -- =

* EXECUTIVE SUMMARY

Concern exists about a possible future software "gap"
between the requirements for software imposed by DoD plans and
systems and the state of practice's ability to meet those
requirements. As an initial step toward gaining a concrete
understanding of this gap* this report concentrates on four
areas:

0 Future software requirements in Defense systems--
implications for software of some future DoD and
Service plans for combat and technology.

0 Current state of practice--in depth look at eight
systems.

0 Software technology transition--case histories of a
number of software technologies and somegeneralizations from them.

0 Current research state of the art--examples in a
number of areas of what is in use and in the R&D

- pipeline (adding to prior state-of-the-art surveys).
After reviewing the evidence, the conclusion is reached that DoD
could indeed suffer from such a substantial future gap unless
steps are taken.

The importance of software in military systems is shown by
L a number of facts. The DoD Report to Congress on the FY 1985

Budget identifies 160 key programs. Of the programs identified
in the report, at least 120 (or 75%) were determined to have a
significant software component. And of the additional programs
listed in the RDT&E Annex to the FY 85 DoD budget that have not

* yet begun, 80% have a significant software component.

- These are just the largest programs and many others exist.
The Air Force supplied a list of 238 Air Force programs with
software development requirements, some of which overlap with
the Secretary of Defense's report. In addition, Operation and
Maintenance funds, not only Research and Development funds, pay
for software efforts in the DoD.

The current development programs identified from the DoD
budget report and elsewhere cover all types of systems from
infantry close combat to strategic missiles. But as important
and pervasive as software is to Ssytems in existence or being
developed today, its importance in future DoD systems appears to
be even greater. Some idea of this increasing importance of
software to these systems is demonstrated by such examples as

ix

the X-29 Forward Swept Wing Aircraft and the proposed Ballistic
Missile Defense System of the Strategic Defense initiative -

both of which require software that represents advances over
today's capabilities and that is critical to system operation.
In addition, the recent experiences of the Unaited Kingdom in the
Falkland islands and of the Israelis in Lebanon with software
intensive weapons and systems show how software has influenced
recent actual combat situations.

"The X-29 supersonic aircraft with the forward swept wing
design illustrates the critical nature of software to future
systems performance. Totally dependent on software controlled
electronic commands, the aircraft requires instant software
controlled response and feedback to compensate for its
instability as any pitch divergence can rapidly double in tenths
of seconds causing its wings to break. These sorts of
dependencies on software have led to estimates of needed future
reliability levels for avionics software of a probability of
failure of 10-9 over a ten hour period--a requirement many times
greater than today.

Six DOD long-range planning documents were studied and
analyzed for future technologies requiring software. Figure II-
3, reproduced below, shows the percentage of items mentioned
that require software in the five Service plans analyzed. The
other plan analyzed was the DTST Ballistic Missile Defense
Battle Management, Communications, and Data Processing plan that
stated, "To design and create the software that ties this system
together and makes it both effective and safe is probably the
dominant problem for (DTST) battle management.

Many systems currently in the planning stages cannot
operate without software, and the long range planning documents
indicate that DOD system and mission performance will be
increasingly dependent on software. Software reliability and
its prediction are not well understood today and their
importance will be rising as software grows in volume,
criticality, and integrated functionality. It must be able to
operate perfectly after prolonged periods of dormancy in hostile
environments and when portions of the system have been
destroyed. Altogether the picture painted by the study of
future requirements is one of rapidly rising requirements along
a number of dimensions.

A close look at a few major projects generally confirmed
numerous prior reports on problems with the current state of
practice meeting current requirements. Problems with budget,
schedule, requirements, staffing, and product quality were
found. Nevertheless, in these projects capabilities were being
fielded and, while it was often a struggle, current requirements
mostly are eventually being met.

x

NUSAU (W VIMzuw - ANNATZQU or Sream

Airlan• Sattle 2000 740

Mus 21 670
AM Vanuacrd Planning 8BYNar, 714

"AIX Comand ad Control Pvia 730

Surces Institutot tot Defense Analyses

*minimum percentage of technologies, syatems, functions, or
actions numoerated in the plans.

rPgure 11-3

The study of fourteen software technologies indicates that
bringing a technology to the point of maturation where it is
popularized and disseminated to a large portion of the technical
community generally has taken 15-20 years. Other studies
Indicate that 4-8 additional years may be required to propagate

SL that technology throughout a large organization. Technological
concepts and ideas that do not need computerized support or a
change in the using community's mind set can mature faster.
Particularly important to technology transition are a recognized
need, a receptive target community, and a believable
demonstration of cost/benefit. Wel]-deslgned channeling of

_ - attention and support, an articulate advocate, prior success,
incentives, technically astute managers, readily available help,
latent demand, simplicity, and incremental extensions to current
technology were albo identified as facilitators. Most
significant among the technology transition inhibitors are the
time it takes to transfer a technology internally, high cost,
contracting disincentives, psychological hurdles, and the desire
by programmers to "fiddle" with a technology that is too easily
modified. Technology originators most often inhibited
transition by small, simple mistakes that were easy to correct
once identified. The Government has also not always facilitated
technology transition.

xi

The research state-of-the-art in software technology has
been aurveyed by a number of studies in recent years. An in
depth look at eleven specific areas -- development methods, test
technology, static analysis technigues# verification techniques,
program transformers, modelling notations, measurement
technology, compiler generation technology, software engineering
environments, editors, and commnand languages -- confirmed
through yet more examples the conclusions of prior studies that
many potentially significant immature or unused technologies
exist.

Seven conclusions were reached. The first five are:

Conclusion 1: Future DOD software
requirements are rising rapidly and
becoming increasingly critical to
the DOD mission.

Conclusion 2: The current software
state of practice is having difficul-
ties meeting current DOD requirements.

Conclusion 3: Software technologies
have taken significant time to reach
widespread use -- 15 to 20 years.

Conclusion 4: The possibility exists
to facilitate and accelerate software
technology transition.

Conclusion 5: Many immature or unused
software technologies exist that offer
potential opportunities to improve the
future state of practice.

The first three conclusions combined with consideration of
two additional points lead to the conclusion that a potentially
serious software problem exists. First, the state of practice
relevant to meeting a requirement in a given year is the state
over the several preceding years while the system was being
specified, designed, and built. Second, requirements in the
aggregate will present a significantly greater challenge than
individually. As embedded software proliferates in non-DOD
industries such as aviation, medicine, and communication, DOD
could be faced with intense competition in the commercial
marketplace for skilled human resources. Thus a substantial
future gap between software related DOD requirements and the
software state of practice is a real threat particularly given
the criticality of software in many planned DOD systems.

xii

Conclusion 6: A real potential exists I
for a critical future gap between DoD
s sstem An isoreurensadhe,system and mission requirements and the
future software state of practice's I
ability to meet them.

Conclusions 4 and 5, however, point to some opportunities
that if properly exploited by DoD might help close this gap.
Many immature technologies exist and their maturity and use
could be accelerated. Problems in the current state of
practice, however indicate that technology is not the only
issue; management, acquisition, and personnel are also areas of
concern,

Conclusion 7: Opportunities exist for
DoD to help close the potential future
software gap between requirements and
the ability to meet them by accelerat-
ing technology transition combined with
concern for management, acquisition, and
human resources.

L

xiii

CHAE I OVERVIE--L

&. roUs OF THU WEPORT"

This report was undertaken at the direction of the

Department of Defense (DOD) to describe future DoD software

requirements, examine current practices and approaches to

software development, review the time it takes a software

technology innovation to become widely used, and offer a glimpse

!uu m"of future possibilities in software technology. The term a,
I software denotes more than a collection of instructions to

computer(s). It includes other descriptions such as

requirements definitions, designs, and maintenance manuals as

r~lm Fwell as tests, plans, documentation, training materials, etc.

Th! software state of practice in the Defense community

producing DOD systems varies and appears to lag well behind the

research state of the art in software. The process of

l transforming research state-of-the-art results into usable forms

, and actually getting them used is technology transition.

In addition to the lag between state of art and state of

practice, another software "gap" of particular interest to DoD

.t is the gap between the requirements for software imposed by DoD -

systems and the state of practice's ability to meet those

requirements. As an initial step toward gaining a concrete

- - understanding of this gap, this report concentrates on four
areas:

o Future software requirements in defense systems--
implications for software of some future DoD and
Service plans for combat and technology.

o Current state of practice--in depth look at eight
systems.

O Software technology transition--case histories of a
number of software technologies and some
generalizations from them.

L.L

_,..4. .

' II,

"0 Current state of the art--examples in a number of
areas of what is in use and in the R&D pipeline
(adding to prior state-of-the-art surveys).

Of interest in this report are future DoD requirements and
the potential future gaps between those requirements and the
future states of practice -- where the future is roughly the FY

1988 through FY 2000. After reviewing the evidence, the
conclusion is reached that DoD indeed could suffer from such a
substantial future gap unless steps are taken.

B. IMPORTANCE TO DOD O rOI TWARN

Computers and related technologies increasingly permeate

current and proposed DoD modernization efforts. An essential

ingredient to properly utilizing computer resources is the P.
software component. Software controls the systems and

potentially permits the flexibility required by DoD systems.

The importance of software in military systems is shown by
a number of facts. The Report of the Secretary of Defense to
the Congress on the FY 1985 Budget (1) identifies 160 key
programs. This report contains brief descriptions of major DoD
programs and, in most cases, development and procurement funding
for fiscal years 1983-86. Of the programs identified in the - I
"report, at least 120 (or 75%) were determined to have a

significant software component.

These are just the largest programs and many others exist.
The Air Force supplied a list of 238 Air Force programs with
software development requirements, some of which overlap with
the Secretary of Defense's report. In addition, Operation and
Maintenance funds, not only Research and Development funds, pay
for software efforts in the DoD.

The current development programs identified from the DoD
budget report and elsewhere cover all types of systems from
infantry cloce combat to strategic missiles. But as important

2

and pervasive as software is to systems in existence or being _
developed today, its importance in future DoD systems appears to

be iven greater. Some idea of this increasing importance of
software to these systems is demonstrated by the examples of the

X-29 Forward Swept Wing Aircraft, remote submersibles, and the
P proposed Ballistic Missile Defense System of the Strategic

Defense initiative -- all of which require software that
represents advances over today's capabilities and that is
critical to system operation. In addition, the recent

experiences of the United Kingdom in the Falklands Islands and
"of the Israelis in Lebanon with software intensive weapons and

systems show how software has influenced recent actual combat
situations.

r
The X-29 supersonic aircraft with the forward swept wing "

design illustrates the critical nature of software to system
performance. Totally dependent on software controlled
electronic commands, the aircraft requires instant response and
feedback at subsonic speeds to compensate for its instability at
those speeds. (e.g., Any pitch divergence can rapidly double in
tenths of seconds). Rapid and accurate data feedback
is required to insure balance and reliable performance. In

hL brief, while the software component is not necessarily the
largest element of the system, it is vital to the functioning of
the aircraft (2).

Another example of the critical nature of software is in
"the development and operation of remote autonomous submersibles.
Remotely controlled underwater vehicles are being developed to
replace humans with machines in dangerous underwater
environments. Three types are under development: shark-type
for search and inspection missions, crab-type for heavy-duty
construction, rescue and repair, and octopus-type for repairing
major structures underwater. All the component technology
required for the shark-type is expected to be available

3

7 -

smaw= G. m 3
Cloe kpnt and 3R.owalseane eat,"af,

X-29 Forward Swept Wing Aircraft.
Photograph courtesy of

Gruwmn Aerospace Corporation.

4

commercially within five years. In ten years, crab-type -

I 5 vehicles will be available and it will take as long as fifteen
"years for the full development of octopus-type vehicles.
Significant advances in software technology are essential to the

development of submersibles. In addition, the importance of
software reliability increases greatly as these vehicles become

more autonomous, since a human will not be available to

intervene (3).

The third example illustrates most vividly the complexity
of major defense systems and the criticality of software in
carrying out the system's mission: ballistic missile defense

(BMD). As part of the DoD Strategic Defense Initiative, a
Defensive Technologies Study Team was convened in 1983 to lay

r out a program of research and possible exploratory development

focusing on problems of ballistic missile defense. The report
of one of the panels, the Panel on Battle Management, Command,

Control, and Communication and Data Processing describes theI 5 battle management system in terms of resources managed and

functions performed. Major issues are discussed relating to the
overall engineering and design of the system -- particularly the

* survivability of functions in the presence of battle damage, the

I criticality of the functions of ordnance safety and weapons
release, and the rules of engagement that must support these
functions. Reliability and communication requirements .are

addressed as well as the rates of data flow and computation for
the large BMD system.

Issues of software design and development, one of the major
engineering problems that the Panel forsees in the development
of a BMD system, are also addressed. The following is excerpted
from the introduction to the major conclusions of the Panel's
report:

"Any BMD system will deal with tens of thousands of objects
and probably several tiers of defense. The problem of achieving

Sthe computational speed and capacity needed to make decisions

5

I

and to manage a complex and rapidly evolving battle has been
emphasized in almost every study of antiballistic missile
technology....It is the complex of broader engineering issues
that dominates the Panel's concerns and recommendations. These
issues relate to the difficulties of specifying and designing a
system that will be of unprecedented complexity and to the
reliability and safety of any resulting system that may finally
bie deployed.

A BMD system will be made up of many elements--sensors,
weapons, computers, and data links, all controlled by complex
software. Most of these will be replicated many times. Each by
itself will be highly complex and will serve as one link in a
figurative chain. All hardware and software links of this chainmust function if the chailn is to do its Job. The software of
the battle management system governs the coordinated activity of
many chains, functioning side by side, and makes the whole
aggregate of hardware behave as a purposeful entity. The
engineering design of these elements and chains is a task that
may be comparable in challenge and complexity to the Apollo
program. To design and create the software that ties this
system together and makes it both effective and safe is probably p
the dominant problem for battle management.

The problem is greater than just writing good software
code, important as good code is. It is first a problem of
systems design, bearing on the effectiveness, safety and econotny
of the BMD system as a whole, and then a problem of realzin.
that design, exactly, in reliable software (4)."

The problems confronted by the United Kingdom in the
Falkland Islands conflict provide a recent example of the
importance of software in military systems. For example,
navigational systems, software dependent ordnance, and other
equipment were identified as needing modification of the
software to accommodate needed changes. Specifically, several
critical systems' software was inadequate or failed and had to
be modified to provide satisfactory performance (5). The GR-3 p

Harrier Aircraft weapon aiming computer software had to be
modified to permit loft bombing (6). The navigation system of
the Harrier required software changes to fly in the southern

hemisphere (7).

Another software modification was to the Ferranti FE541

inertial navigation (FINRAE) system of the GR-3 to permit it to
act as a reference system on a moving ship deck, giving the

6

rTi

aircraft data for platform leveling and true north alignment
"before each sortie. Final software for the FINRAE was

* transmitted to the ships at sea via satellite communications.
The British GR-3 pilots however, characterized this system as
erratic and unsatisfactory even after the software modifications
were made (8).

In contrast was the successful use, perhaps for the first
time in support of actual operations, of computer graphics as an

= -aid to the assessment of topography for the siting of an air
Si "defense system (9). .

Another recent successful combat use of a software
intensive system was the Israeli use of airborne surveillance
and warning aircraft to manage their overwhelmingly successful

ii air battle with Syria over Lebanon (10). Additional indication
of the prowess of such technology is also given by the several
recent U.S. deployments of the larger AWACS aircraft to middle-
eastern trouble spots.

Although these examples are just highlights of defense
systems, they are representative of the integral nature of
software for managing and controlling essential functions in
present and future DoD mission-critical systems.

C. CONTEXT OF THE REPORT

" This report consists of an analysis of future software

requirements based on DoD planning documents and examples from
. . DoD programs (Chapter TI). The current state of practice is

examined through a detailed look at a small number of systems
(Chapter III). The time taken for software technology to
progress from research to wide use, thereby improving the state
of practice, is investigated via a number of software technology

. "case studies (Chapter IV). Examples of what software technology
is in the R&D pipeline are described (Chapter V). The report

ends with a brief summary of findings and a discussion of their
i •implications.

7
lill~i ,

ir~ 7- 77 _ _

(1) Report of the Secretary of Defense Casper W.
Weinber er to the Congress on the FY 1985 Budget, F!
1986 Authorization Request and FY 1985-1989 Defense
Progrm BDepartment Of Defense, 1 February 1984.UNCASIFIED. • .I:

(2) Richard Demeis, "Forward Swept Wings and Supersonic
Zip," High Technology, January 1982, p. 33.
UNCLASSIFIED.

(3) John Douglas, "Remote Submersibles Take the Plunge,"
High TechnoloqX, Volume 3, Number 2, February 1983,
pp. 15-17, UNCLASSIFIED. -

(4) RePort of the Study on Eliminating the Threat Posed by,
Nuclear Ballistic Missiles--Volume V: Battle
Manaqement, CommunIcations, and Data Processing.
Broc•kay McMillan, Panel chairman, Defensive
Technologies Study Team, Alexandria, Virginia, October
1983, UNCLASSIFIED.

(5) Lessons and implications from the South Atlantic
Conflict, Volume II - Part 1: Appendices A-G -
Background Papers, institute for Defense Analyses,
November 1983, SECRET.

(6) Ibid., p. F-4.

(7) Ibid., p. F-45.

(8) Ibid., p. F-3.

(9) Ibid., p. 0-11.

(10) Malcolm W. Brown, "Video Warfare Over Lebanon,"
Discover, Volume 2, Number 8, August 1982,
UNCLASSIFIED.

8

CRAPTER I1. A REVIEW Or DEFENSE SOMWARE REQUIRE1METS

e A. INTRODUCTION

1. Objective and Purpose

An appreciation of future DoD software requirements is
i essential to understanding the potential gap between

expectations and the ability to meet Defense objectives. This

chapter provides information on existing and projected software
requirements in the Department of Defense.

The aim of this chapter is to identify software
"requirements integral to DoD operation and mission goals. Six

l. selected DoD long-range plans were reviewed to identify
approaches and specific technologies that infer a software
component. In addition, a number of inquiries were made of

selected DoD programs.
i The software requirement, defined in this context, is an

- essential or critical element within a program or application.
L DoD software development often requires a large investment of
- resources and is essential to the mission or operation of the

system or program.

This "criticality" is well illustrated by the X-29, the
supersonic aircraft with the forward swept wing design discussed

in Chapter 1. The advantages inherent in forward swept wing

design over aft swept wings--lower stall speed, reduced drag,
higher maximum lift, improved distribution of internal fuselage
volume, and better low speed maneuverability--make the basic
design particularly well-suited to a wide variety of Navy and

- Air Force aviation requirements. Several aircraft designs have

-* employed the configuration in the past, but development was
stymied by structural limitations. It is structurally unstable

9
l-_2.,

and, at high speeds, forward swept wings tend to break off.

These problems can now be solved with new composite material
construction and computer software control.

In the X-29, the pilot operates the hydrauli.cally powered

aircraft control surfaces via digital electronic commands

instead of a mechanical pushrod and crank linkage. Electronic
commands and distributed microelectronics provide instant
response and feedback, and save weight and space.
Aerodynamically, the X-29 design is actually unstable in pitch
at subsonic speeds. Any pitch divergence can rapidly double in
a few tenths of a second. The divergence motion is sensed by a
system of gyros and accelerometers monitored by computers.
These computers continuously correct the pitch with small canard

deflections, maintaining stable flight. Because the aircraft is

moving at such high speeds and the time to diverge is so small,
it would be impossible for a human to correct the divergence
himself.

When the pilot maneuvers the X-29, a command deflects a
control surface to rotate the aircraft. Since the X-29 is such
a responsive unstable configuration, once it is rotated, it
"continues to rotate unless it is stopped by a reverse control

command at the end of an intended maneuver. This is possible
because software controls the X-29 by taking into account flight
conditions (speed, altitude and acceleration), rotation rates,
and engine conditions as well as pilot action.

2. Two Prior Studies

The Electronics Industries Association in 1980 prepared a -

ten-year forecast of software requirements for DoD data
"processing applications and embedded computer applications (1).

The Defense embedded computer forecast addressed the U.S.
military and aerospace market for militarized digital computers

10

that are applied in real-time equipment operations to solve

tactical, strategic and operational problems. The study

estimated the annual cost of embedded compater software at
almost $9 billion in 1984, and predicted that it could reach $32
"billion by 1990 (see Figure 11-i). In terms of the embedded
computer resources devoted to software, in 1980 the software

content was 65%, by 1985 the software content will increase to
80% and by 1990 software will account for 85% of the total
embedded computer dollars (see Figure 11-2).

An industry report published in June 1979 by Frost &

Sullivan, Inc., presents an analysis and forecast of the U.S.
"military software market (2).

The DoD software requirements covered include tactical and
strategic system software, embedded systems software, fault-
tolerant software, distributed systems, real-time non-

:. -distributed software and simulation and modelling software. The

* application areas include ground-based, airborne, space-based
and re-entry systems, shipboard command and decision,
information processing, displays and graphics, sensors/detectors"
and countermeasures, communications as well as surveillance and
intelligence.

S•-The report concludes with an overview of the important
development trends in the military software field and a

, •prediction that military software will increase to 6% of the DoD

annual budget in 1985. Thus, these two previous studies that
-- have examined the DoD mission-critical system market, indicate

that software is a critical aspect of a very significant number
of these systems and the demand for software is steadily

increasing.

-ac

L11

-�

A.

Pt -

* - -�

*

iWO S37.90M

I
lOSS S13.920M

IWO S4.IOOM

ii ____________ -

Figure lI-i- Embedded coqiuters Hardware Vs. Software Cost

SLUONI

34 32.10 -

32 - -.

30

a
26

i 24

21.20 - -

a
13

15
12.50

__ 14

12

10

B
6El

500
- - - - -

2 3

3S go
I- Year

Figure 11-2 - Embedded Computers Hardware Vs. Software Casts

Source: Electronic Industries Association

12

B. FINDINGS AND ANALYSIS --

Information collected on major DoD programs, inquiries to
DoD program managers about software development on their

programs, and examinations of DoD long range planning documents

reveal some findings about the status of software development on

current projects and future requirements. These findings are
analyzed for trends and future implications for DoD software

. development. Specifically, it is clear that current systems are
unable to measure software reliability and that the volume,

complexity, and criticality of future software requirements is
increasing. Total expenditures for software development do not

always accurately reflect the importance of software to a system
or weapon. Therefore, future cost estimates for software
development may actually understate the issue of criticality and

*• not be good measures of future requirements.

1. Software Develoonnt Component of DoD Programs

Information collected on major current and future DoD

* programs revealed that (as discussed in Chapter 1) at least 75%
of the current programs have a software development component.

Among the programs to begin in the 1985-1989 time frame, it was
" L estimated that at least 80% will have a software development --

component. This suggests an increase in programs requiring

"software development for the near term.

Some specific findings relating to software development in
major DoD programs follow. They concern software reliability

and criticality of future software requirements. Software
reliability is defined as the likelihood that the software

performs as it was intended.

As systems become more autonomous, complex, and dependent
on software control, software reliability gains importance.

Yet, one of the most interesting findings was that most of the

13

("

programs of whom inquiries were made were able to specify system
reliability, usually mean time between failure (MTBF), but few

were able to specify software reliability.

As an example of current efforts to address this problem,
the Next Generation Weather Radbr Program, a joint Department of
Defense, Department of Commerce, and Department of

Transportation program that uses twenty algorithms to process

raw data from radar, described its software reliability

requirements as follows. The program specifies three types of

software errors (in the style of MIL-STD-1679 (3)): (1) an

error that prevents the operating function from performing, (2)

an error that degrades performance but can be worked around, and

(3) all other intermittent errors that do not degrade
performance. The measure of software reliability used by this

program is that, upon completion of testing, the software should
not have any known unresolved errors of type one, no more than

one known error of type two per 70,000 machine instruction words
and no more than one known error of type three per 35,000 .

machine instruction words. The survey respondent expressed

doubts about the effectiveness of this measure of reliability

but indicated it was the best measure currently available.

(These doubts accurately reflect the current state of - -

understanding of software reliability.)

Some systems that are highly dependent on software such as
the LHX helicopter, currently under development by the Army, are

creating triply redundant software for crucial systems such as .

flight control. The three systems will run in parallel,

providing back up for one another in case of failure. Schemes

such as this, while they require additional software
development, at least recognize that software reliability is

critical when the system depends heavily on software for safety

and mission success. Very high future reliabilities will be
required, for example the need has been estimated for the

14

probability of failure in avionics of 10-9 per 10 hours flight
operation (4).

Different functions require varying amounts of software.
The WWMCC8 (World Wide Military Command and Control System)
Information System (WIS) and Joint Deployment System# both spend

a high percentage of total program funds on software# as to be
expected as C31 (Command, Control, Communications, and
Intelligence) systems make heavy use of computers. The A-6E
Intruder aircraft however spent a very small percentage of total
program funds on software since its costs are largely
hardware-related. Nevertheless, though the software cost in
this case is small, it is important to note that the software is

critical to aircraft performance. The software enables the

aircraft to navigate and to drop bombs in bad weather and at
night by using radar to locate the target and sensors to tell
the computer the speed of the airplane, the wind, and altitude.
2. Defense Long Range Plans

"E Six DoD long range planning documents were studied and
analyzed for future technologies requiring software. In these
plans, technology refers to a body of practical knowledge for
achieving a purpose including scientific methods, tools, and

L procedures. These long range plans may or may not be formally
approved by the Services, but they offer a glimpse of future
technology directions.

0 Airland Battle 2000

So Air Force 2000

"o Focus 21 Appendix-Technological Opportunities for
Focus 21

o AFSC vanguard Planning Summary

"L15

"o Navy Command and Control (C2) Plan,

"o DTST Ballistic Missile Defense Battle Management,
Communications, and Data Processing

Figure 11-3 summarizes the findinge, indicating the
percentage of technologies, functions, and systems identified in
the DoD service long range plans that require software*. on
average, 70% of the technologies, functions, systems, an,

actions identified require software. Appendix A describes the
methodology used to conduct these studies. Appendix C is a
bibliography of long range planning documents including those
that were examined for this study.

* The DTST Ballistic Missile Defense Battle Management,
Communications, and Data Processing volume is not inclu ed in
the figure as it did not identify specific technologies but
nevertheless r%ýzngnizr.s the importance of the software component
and addresses mean6 of improving software development.

16

~1

i SMARY OF FINDINGS - EUMINATION OF SELECTED

SERVICE LONG RANGE PLANNING DOCUMENTS

Plan Percentage
r-equirtng software*

Airland Battle 2000 74%

Air Force 2000 67%.r
Focus 21 67%

AFSC Vanguard Planning Summary 71%

Navy Command and Control Plan 73%

Source: Institute for Defense Analyses

L *Minimum percentage of technologies, systems, functions, or
actions enumerated in the plans.

Figure 11-3

17

a. Army Futures Conoelpts
The Airland Battle 2000 document describes an overall war

fighting concept to drive organizational alignments, doctrine,
training and materiel requirements for the Army in the early

21st century similar to the way that the Army Field Manual 100-5

Operations describes current airland battle doctrine. The
Airland Battle 2000 examines trends in order to predict the

environment, battlefield characteristics, and Service
imperatives of the future. The Airland Battle 2000 and its

successor, Army 21 (currently in the planning stages) describe
technologies and systems of the future having sophisticated,

massive, and critical software requirements.

The Airland Battle 2000 predicts that the battlefield of
the 21st century will be dense with sophisticated combat systems

for aerial and space surveillance, reconnaissance, target

acquisition, air defense, and ultra fast communications.
Systems will be integratedl there will be chemical, nuclear,
biological, and electronic weapons; and robotics and artificial

intelligence will play increasingly important roles (5).
Integral to nearly all of these systems is software.

Some examples of systems currently in development or
operation designed to meet the challenges of airland battle

doctrine include sensor and fusion systems and remotely piloted

vehicles. The JSTARS (Joint Surveillance and Target Attack

Radar System) system being developed by the Army, will gather

from air platforms and elsewhere in the battlefield information
that will be fused and managed by a system such as the Joint

Tactical Fusion System (also currently under development). In a

combat situation, large amounts of unorganized information can -

be unusable, so decentralized, distributed, sophisticated

information systems will need to be developed to organize,

18

filter, and switch rapidly the information to appropriate -

destinations. In some cases, when time is of the essence, it •

may be appropriate to bypass the fusion system and downlink the

information from the sensor directly to the artillery. Such

sensors would require software to enable them to distinguish -

between information to be fused and information to be sent ,

directly to a unit.

Airland Battle 2000 divides the future battlefield into

nine functional areas. While they were developed in an

unconstrained study, they do offer a view of possible technology ',

applications for the future. To draw a picture of future

software development needs, the nine appendices in Airland

Battle 2000 were analyzed for technologies requiring software.

The results appear in Figure 11-4. Appendix 9 lists the
requirements identified in each appendix that require software.

Altogether, software is necessary to at least 74 percent of

the future technologies listed in the Airland Battle 2000. Even

the Combat Service Support (CSS) functional area which has the

lowest percentage will be "characterized by mobility,

automation, and independent operations" in the 21st century

according to the Airland Battle 2000 (6).

Seven out of the nine appendices in Airland Battle 2000 I
mention the use of robotics and artificial intelligence.

Simulations will be used to train all levels of military

personnel in the future. Automated land navigation systems will

help the Army to conduct accurate, continuous combat when

visibility is restricted (7). All assault vehicles will have

automated mine detection, neutralization, and reporting devices.

19

Some striking examples of future capabilities described in
Airland Battle 2000 requiring software include the following.

o Remotely deployed, intelligent, robotics automatic
weapon stations will move rapidly around the
battlefield under software control providing
countermobility capabilities.

o Terrain analysis systems will support obstacle
planning, control, and reporting and analytical
software will replace human terrain analysis at all
levels (8).

o Software will enable fuses to identify friend and foe,
and will be command, time, or time-extended detonated
(9).

o Real time intelligence systems will continuously rr -
record, analyze, and report data about the enemy,
weather, terrain, and obstacles on the battlefield.
Topographical data bases will be updated by remote
imagery scanning systems.

o Other data bases will contain information about
friendly units, patterns, profiles, and high value
targetj making it possible to assess the situation
from the enemy's point of view.

Software, as part of a weapons system, will control its
functions: monitoring sensors, tuning transmitters, controlling
vehicles, and dropping bombs, for example.

"Software will also perform an organization and analysis
function. Examples are data fusion, database management, and
decision support systems that organize and make sense of many
facts at once.

Software can be modified in response to changing
requirements without changing or replacing the hardware.
Software, therefore is becoming increasingly responsible for
system flexibility and functionality.

20

- , Technologies Airland Battle 2000

Sumary of Software Requirements

Technol.,i ,::Functions,

"and
Systems
Requiring

Functional Areas Software

Command and Control 88%

Close Combat 78%

Fire Support 62%

Concept for Air Defense 89%

intelligence and Electronic Warfare 83%

Commiunications 100%

Combat Support, Engineer, and Mine Warfare 48%

Combat Service Support* 38%

Army Aviation* 82%

*Did not contain a "Focus on 'rechnoloqy" section. Technologies
were derived directly from appendix body.

Source: Airland Battle 2000.

Figure 11-4

* 21

a'll ll . - .. t.'-

Although the Airland Battle 2000 makes few statements about

system or more specifically software reliability requirements,

it does say that battles in the future will be continuous,
fought during day, night, in all weather conditions and on all

types of terrain, implying that both system and software

reliability (the ability to withstand these rigorous

conditions) are critical to success on the battlefield of the
future. In describing command and control systems of the
future, Airland Battle 2000 mandates "a system that precludes

sudden and catastrophic interruption of air defense coverage

(10)." In addition, air defense systems must be simple,
durable, not manpower intensive, modular in design (to allow for
product improvements without major system redesign), and

maintain commonality with other Army and Service systems (11).

Software will perform functions previously performed by
humans such as navigation and identifying approaching aircraft.
This software will be modular, allowing modification of parts of

it without replacing hardware or all of the software. If system
failures occur, software should ensure that the system undergoes
graceful degradation instead of catastrophic loss of operation.

Weapons systems performance in the future cannot accept
significant degradation through the employment of
countermeasures by the enemy; therefore, systems must
incorporate multiple modes of operations (radio frequency,
infrared, acoustic, optical, laser), all of which are under .
software control, to maintain tactical viability (12). To avoid
degradation in capability in the event of communications loss,

weapon systems must be optimized for autonomous (i.e., software
controlled) operations. This requires each system's software

controlled identification and target classification capability
to be near perfect (13).

22

-

Future communications and data distribution systems which

Airland Battle 2000 recognizes must be highly reliable, will
achieve redundancy through relays and alternate routing of
digital data among sensors, maneuver control# tire support, air

defense, combat service support, and intelligence electronic
* warfare data (14). Since the battlefield of the future is

projected to be dense with sophisticated systems, most of which
will require software, success on the battlefield depends upon
these systems (and their software). System and software
reliability are therefore crucial issues for the future.

h few examples comparing today's capabilities with those
called for in Airland Battle 2000 help clarify the enhanced

requirements.

*The 18X helicopter is an example of a future system called
*for by Airland Battle 2000 that is software intensive and in the

*planning stages today. The system will have a fully
jjintegrated/automated cockpit. it is planned to be a highly-

reliable, lightweight, and easily maintained weapons system.

* *,,Technology maturing in the 1980s in composite structures,
engines, drive systems, and avionics will be the cornerstone of

the LIIX design (15).

The J 'X will have a digital flight control system and a

- digital electronic fuel control system both of which are highly
dependent on software and triply redundant. Triple redundancy

_l means that three separate flight control systems each with
independently developed software will operate in parallel

because flight control reliability is so critical to aircraft
survivability. In the event of a software failure in any of

them, the aircraft will still have flight control.

23

L| i ,...,.o, ,,. o.

S.. . . ~ .. ,-. . -r': • :- . - ,' -. -:, • • : • • • • . i . i• . • . i • .

The LHX will have a variety of surveillance and target
acquisition sensors including radar, forward looking infrared
sensors, and low light level television cameras mounted on the
aircraft that can operate in low visibility situations.
Software will fuse information from these sensors to an
integrated general display. The LHX will also have weapons and
fire control software. Simulation software will be used to
influence the general design process.

In fact, the aircraft cannot be flown without software. It
is the most complex helicopter ever to be developed and the
level of sensor integration has never before been done on a
helicopter. It is different from the existing Army AH-64
(Apache) and AHIP (Army Helicopter Improvement Program)
helicopters in that it is planned to be a single pilot aircraft
with multiple sensors integrated into a single display. The
AH-64 and AHIP have FLIRS (Forward Looking Infrared Radar
System) and low light level television sensors that drive
individual displays. There is no fusion and little information
integration capability. The AH-64 also has weapons and fire
control systems. The AH-64 software consists of 190,000 lines

of code and was essentially an integration of off-the-shelf
software. The LHX, it is estimated, will require at least
500,000 lines of code most of which will be new. The LHX plans
to use VHSIC technology and the Ada programming language (16).
Full scale development for the LHX is planned for FY 1986 and
the system is scheduled to be introduced into the field in the
early 1990s (17).

24

*.7

In the area of Air Defense, smart or maneuvering
projectiles will have software to guide them, report their

orientation, and sort targets. Shoot-on-the-move, fire-and-
forget, and self-initiating missiles will all require software
to interpret return signals and images, to guide them, to adjust
sights and trajectory, to set parameters, and to sort targets.
Software in sensors and battlefield information systems,
utilizing various modes of communication, including laser,

particle beam, microwave, and non-nuclear EMP, will provide
decision support information, apply logic, distribute or
transfer assets, coordinate aircraft, report casualties, request
replacements, and control inventories. Signature exploitation
software will enable air defense systems to interpret return

.. signals and images, recognize patterns, and sort targets. Early
"* air defense systems, created after World War II, were capable of

tracking only one target. The current Aegis system can track in
excess of 200 targets and the Ballistic Missile Defense System
is planned to track tens of thousands of targets.

As another example, Figure I-5 compares today's

L capabilities with future capabilities in the area of Air
Defense, listing twice as many future capabilities as present
capabilities, many of which will require software. The third
column describes the functions of software in air defense.

Even Airland Battle 2000 does not cover all the future
Army's software related requirements -- the Army is in the

process of the next iteration of futures concepts development.

The new concept will be called Army 21 and will subsume Airland
Battle 2000, while also covering several new areas, including:

L ,,

21

25t

.1

70

to 44 4' 0ý

0 "4 0
"4 41 Ob VA w 4 0 0 641

Oh1 A"4 4 to $.4 M4 (a 1 w4 0 0
.4) ".41 41 Aj 4) to 0 ' hi to

4)~ ~ ~ ~~~A 4Jj0Oi00hi h09
U 90' 4'w 0 0 0 0 %I 0

C so "4 0 4 O1i4. w 9 0
"0 "4 wi 00 .04

hi0 Aji I 4 0 w)C H h 41
0o 41P Ahi ",4 44 "4 h t
1 to w 0c V.' w 4

04 01t" " mtv A i $ o
0 " 0 w) w'2

to 04 W 1tIO

".4 r4

.0 h0

h4w i 4J
> ~ 9 4 "4 hi

L4~~ > >4w 4 4

414w

04 0 i 10 4 V4) '

0 hi 41 U 04 4) w40 w - o-0 4 4 -
04 F- w 0 4)0 -j w 0w 4 (d &i to 0t4 F4 01 t"0 t

V4 03 -A M0 hi4 0 -A 0 C -A 41 "404
0 64~ N X u 04 x WNW 4 9 W H i

m 41 0a 0 i O H 0 0 C hI0 Q' w 1.'40~i 941

0 04

04

0# 0

NO 4 "4 M0 4
0; to 0) 0
"4 H4 P4 0 (4 A 4
0 F-4 "4 0- IV-

w a9 0 .H r.V
to4 LA 4 to4 04 C 4,t

0) c 4 0 00 A04
H 1 0 P Z 41 .04 >j- w 4

Da4 -"4 to04 H -)
0 t 0 V I' 94 VOW 12 a

0 -. .4H H h i 0.41 4'
04 0 0J 0M CD to C 0 0.0

0 4 hi 0 w wA

008 0 U0 0 ~ to

26

o Military implications in space

o The human dimension
o Joint air and ground operations
"o Worldwide command and control of forces
o Leadership
o Low intensity conflict and terrorism
o Organization of air and ground forces for combat
"0 Role of air support (18).

Space (battlefield surveillance), the human dimension (man-
machine interface, computer-assisted instruction, simulations),
air and ground operations (sensors, smart weapons), worldwide

command and control of forces (communications), and organization
of air and ground forces for combat (C2 , communications,

tactical fusion) will all require software.

27
L..

- .- Yt~ i 77-- ,-~,*-- -j -7wr-w

• p

b. Air Force 2000

Air Force 2000 identifies ten highest priority military

systems capabilities for the year 2000. They aret

o survivable enduring strategic forces

o remote surgical strike of fixed targets
o space offensive and defensive capability
o aerospace warfare management
o operations in a chemical/biological/nuclear

environment
o adequate sortie generation

o penetration of enemy airspace

o operations independent of night and weather conditions

0 mobile target kill

o rapid global force projection (19) 4v.

For each capability, Air Force 2000 discusses mission and

needs, concepts and improvements, and the required technologies
to achieve the capability. Figure 11-6 summarizes the

technologies required for each capability. Of the fifteen

technologies listed, ten require software.

Information processing, as described by the Air Force,

includes the science of artificial intelligence, other forms of

computer processing, and software production which is so vital
to the use of computers. A rudimentary application of

artificial intelligence would be to "see" a group of objects,

match the pattern with a limited set of master patterns in

priority order, and select the best object for attention. A

more sophisticated and difficult application of artificial
intelligence is the gaming, option selection, and decision

support necessary for C3 1 (Command, Control, Communications, and

Intelligence) at the national level. Artificial intelligence
will make smart weapons truly smart enabling them to select the

most important good decisions based on massive amounts of

information in extremely short periods of time. These decision

28

functions require an enormous amount of software. The efficient "

S development of such software is essential to achieving the

potential offered by the use of computers especially as software

becomes more complex, expensive and difficult to check and

maintain (20).

The challenge of sensor technology is to achieve reliable

operation at night and in all weather, to automate such

functions as sensor control and target recognition, and to

integrate sensors with each other and the remainder of the

avionics software suite (21).

In the area of supportable electronics, redundancy and

self-checking need to be incorporated so that failures can be

found and circumvented both in maintenance and during system
operation. By emphasizing standardization, multiple use of

"hardware and software designs can be made resulting in
simplified modification and upgrading. In unmanned systems, the
"watchdog" function can be automated, which along with greatly

improved component reliability will yield high "on-the-air"
rates over extended periods (22).

Signal processing technologies to transmit or receive

Lsignals vital to communications, sensors, IFF (identification of

"*. friend and foe), and threat warning systems also require

software. Signal processing is a digital technology where

signals are sampled, converted to binary values and fed into a

computer. Sophisticated cý:iing schemes, cancellation of
interference, sorting of multiple signals and other processing

functions can be implemented in software allowing for

modification by reprogramming without hardware changes (23).

Dormant guidance rystems in ICBMs should be capable of

* 'rapidly responding with minimal platform settling time and

minimal degradation in accuracy. Rendezvous of anti-satellite

L2-

.* ., 9 ,- .

)i''• -'" • • .'i -'• 'i ': ••' ." L•'•.'. ,' . : .. • •' ,' -" -" - " -!: • i "• " '. " - " • - -" ' " " " " "." - '" "" " "

AIR VRo~3 2000 . rCHNOWGY MATRIX .1

SYSTEM• •'

REMOTE GICAPLITIE ISiIIIIIiII
SURVIVABLE ENDURING * * * * * * * •S•STATEGIC FORCES ,

FE 0 *,, S ...

DEFENSE CAPASILITY @

AEROSPACE WARFARE MANAGEMENT * * * • 1 • •

OPERATIONS IN A CHEMICAL/ .
BIOLOGIC•AL/NUCLEAR ENVIRONMENT . ..

ENSURE ADEQUATE SORTIE
GENERATION RATE

PENETRATE ENEMY AIRSPACE 0 * * 0 0 S *
OPERATIONS INDEPENDENT OF . * * *
NIGHT AND WEATHER

MOBILE TARGET KILL 0 0 * * O

RAPID GLOBAL FORCE

PROJECTION ----- - - -

* - Important o- Applicable

Source: Air Force 2000 Executive Summary, p. 17

Figure 11-6 -

30

weapons and escort satellites may require dormant or semi-
dormant electronic, guidance# power and propulsion systems

capable of highly reliable quick response (24).

Short take off and landing (STOL) technology require.

advances in aerodynamics, propulsion, structures, control
systems, and landing gear. Intelligent (i.e., software
controlled) fire, Zlight, and engine controls are integral to

,' STOL technology (25).

Of the fifteen technologies enumerated in Air Force 2000,
it can be inferred that ten require software. Right of the ten

military system capabilities listed will use information

processing and thus, software, directly. All of this software

V.. will be characterized by increased complexity (systems must be

more accurate, autonomous, able to perform rapidly and

continuously in all conditions, highly integrated and use
artificial intelligence techniques), volume (virtually all

weapons systems and aircraft will require software), and
criticality (reliability of this software is crucial to mission
success especially during autonomous operations).

As Air Force 2000 points out "traditional measures of

reliability such as mean time between failure (MTBF) do not

adequately characterize the reliability of systems whose

failures are undetected until the systems are used in earnest
3(26)."

• • ~~~31 i-: •

L Ao

co Focus 21

The "Technological Opportunities for Focus 21" Appendix to
the Focus 21 Working Paper, a joint Army Air Force effort,

specifies broad technological requirements for the 21st century
(27). It describes the current capabilities and limitations and

technology potential to improve capabilities for ten functional
areas: Surveillance, Target Acquisition and Damage Assessmentl
Warfare Management (C3I)l Operation in CNN (Chemical/Biological/
Nuclear) Environmentl Operation Independent of Night and Weather
Conditionsa Force Deployment/Nobility; Electronic Warfare and

Countermeasurems Target Engagement and Kill; Improved rorce

Efficiencyl and Survivable, Enduring Combat Forces. Fifteen
critical technologies for the next 20 years are identified,

Processing Technology (Information, Displays, Signals)
Directed Energy
Airframe Aerodynamics (Aircraft and Projectile,

Control Force Generation)

Propulsion

Fuse and Warhead Technology
Mobile Electrical Power

Simulation, Training and Human Factors
Technology (Man-Machine Interface)

Biotechnology

Electronic Systems Supportability

Electronic Devices
Signature Reduction Technology
Cooperative and Non-Cooperative IFF
Sensors
Communications and Data Transmission(28)

32

Of these, ten or two-thirds have future software

requirements. For example, electronic system supportability .

requires the development of fail soft, fault-tolerant, reliable
electronic subsystems, high throughput circuitry and the -
application of artificial intelligence techniques. Software for

* reliable, fault tolerant, fail soft avionics subsystems must

allow missions to continue when portions of the base maintenance
and support facilities have been destroyed. A major
technological challenge will be the development of techniques to

ensure reliability of components not regularly tested (29). p

* In the area of cooperative and non-cooperative IFF

(identification of friend and foe), software to provide weapon

systems with a near perfect identification and target

classification capability and optimized for autonomous

operations needs to be developed (30).

Communications require the development of standard

computer language, formats, protocols, and hardware to permit

more efficient use of the communications resources and provide

greater flexibility (31). Lightweight smart antennas with

software to automatically null out undesirable signals and use

the total spectrum from optical to very low frequencies also A

require development.

In Focus 21, the Air Force identifies the following five
"highest payoff technologies of the technologies listed in Air
Force 2000 and required for each capability:

O Information Processing Technology

o Sensor Technology
o Supportable Electronics
o Stealth

o Laser Technology (32)

All of these require future software development. While
the first two are software intensive, the last three,

supportable electronics, stealth, and laser technology will also
involve software control.

33

. *

I ,*"

d. AFSC Vanauard Plannigg Sgmar'

Vanguard is the Air Force Systems Command (AFSC) structure
for planning future research, development, and acquisition
"activities. The Vanguard relates Air Force objectives to
technology opportunities and options for future weapons systems
spanning the time period from the present until 20 years in the M
future. The AFSC Vanguard Planning Summary is published

annually.

Vanguard includes ten master mission areast strategic
offense, strategic defense, tactical air warfare, command,

control, and communications, tactical
reconnaissance/intelligence, war readiness material, space,
mobility, electronic combat, and defense-wide and technology

base activities. Each mission area is described in terms of

mission objective, tasks, scenarios/threat, and current/baseline
capability. Technology, development, and production goals for
the mission area follow (33).

The technology and development goals for each mission area
were counted and analyzed for software Levelopment components.

Figure 11-7 shows the ten mission areas, the number of
technology and development goals identified for each, and the
total number and percentage that require software. On average, -

71% of these future goals will require software. When looking
at the last mission area, Defense-wide and Technology Base
Activities which is broken into near and far term technologies,
the percentage of technologies requiring software is greater for
far term technologies than near term technologies, implying that
more future technologies will require software than is required
at present.

Four of the five far term technologies listed will require
software or be under software control. They are: information
Processing Technology, Microelectronics Technology, Directed
Energy, and Sensor Technology.

"34

Some of the data used to compile Figure 11-7 are classified

and therefore cannot be included here.

3u

L• "2.

7,2

ALOC Vanguard Plannigg Suammary Technology and Development Goals

Goals la----ejGoal'
Total Re47. Rea.
isoar (iaae So fwre.

Strategic Offense 9 9 100%

Strategic Defense 25 19 76%

Tactical Air Warfare 19 12 63%

C3 11 873%

Tactical Reconnaissance/ L .
Intelligence 8 7 88%

War readiness material 19 8 42%

Space 6 4 66% -

Mobility 11 6 55%

Electronic combat 14 12 86%

Defense-Wide and Technology Base
Near Term Technologies 16 8 50% _

Far Term Technologies 5 4 80%

Source: AFSC Vanguard Planning Summary .

Figure 11-7

36

e. aVY Command and Control plan

The Navy Command and Control Plan presents an overview of

global Navy strategic and tactical commitments, derives C2

(command and control) capabilities in relation to warfare areas
and support tasks, and assesses C2 capabilities. The plan

recommends actions to be undertaken over the next ten years to
meet these requirements (34). Since C2 architecture is heavily

reliant on data processing and software, many future software
requirements are implicit in future C2 requirements.

The plan identifies 122 actions. Of the programmatic
actions, 34 are new, 9 are modifications, and 16 are to existing

* programs. The remaining 63 actions are procedural (develop
plans, define requirements, establish data links, etc.). Plans
of action cover the following areas: strategic connectivity,

submarine communication restrictions, communications
vulnerability, sensor system coordination, command facilities,

interactive data bases, multisource correlation, navigation

integration, non-NTDS (Naval Tactical Data System) platform

. integration and electronic warfare.

Of the 59 programmatic actions, 43 (or 73a) involve

software development, modification, or integration. Appendix F
- .ilists the individual programmatic actions requiring software.

Figure 11-8 shows the numbers and percentages of new, modified,

Sn .: oand existing program actions that require software. More new

and essential existing programs require software than do
modifications to programs. As to be expected in C2, most of the

software development is for communications, navigation, sensors,

. ;-. and command and control systems.

S L~ "" 7

• ianl atins 34ar nw,9 remoifiaton, nd16aretoexstng"37'

Navy C2 Programatic Actions Breakdown by Software Requirement"

Total Actions Req. % Req.
Software Software

New Programs 34 28 82%

Modifications
to Programs 9 2 22%

Essential
Existing
Programs 16 13 81%

Figure 11-8

38

-: .

f. DTST Ballistic Missile Defense (E.D)

SThe Defense Technologies Study Team (DTST) Volume V report
forecasts software requirements in suppozt of the proposed
ballistic missile defense (BMD) emphasizing battle management,

communications, and data proceosing (35). The DTST report -

(Volume V), discusses the problems relating to battle management

and survivability of key functions in an adverse environment.

Many of the critical functions related to battle management,
such as command and control, ordnance control, and weapon
systems are highly dependent on software. Consequently, the

* software component remains a central aspect in meeting future

requirements as outlined in the report.

The DTST Volume V specifically emphasizes that software
requirements for the ballistic missile defense will exceed any
other single system currently in operation. The report
indicates that the proposed ballistic missile defense (BMD)

software component will exceed current systems such as Safeguard

by three to five times and will be larger and more complex than V

those previously developed. Also, as proposed, the BMD software

component, to be effective, must meet more stringent controls.

The DTST report also indicates that there is an added layer
of complexity in predicting BMD software requirements because as

proposed the system will include a large number of
geographically distributed computer resources, including those

that are satellite based. In addition these space based £

resources must be capable of surviving a hostile environment.
More importantly the software must be able to cope with
temporary failures in parts of the system, that is, the software

-_ must be able to operate even if portions of the system are

destroyed.

The report argues that the BMD battle management system

demands special managerial and technical controls as well as

L development of specific software tools. In addition the report

39

C-

concludes that automated tools are needed to help interject
controls and management oversight into the dovalopment of the

complex BMD battle management system and its software.

In order to identify requirements for such a system the

report suggests that automated tools be developed to permit "a
formal set of requirements to be specified and verified for com-
pleteness and consistency." Consequently the automated

development is predicated on development of appropriate

manaagement controls, verifing that implementation conforms to
specification, and capturing the "corporate memory, that is
maintaining a sufficient grip on salient events and activities." -

The report also comments on maintaining and upgrading the
software for such a complex system. It predicts that tools will
be needed to support the development process and ultimately will

be useful to support the maintenance effort associated with
software.

The report reaches several major conclusions. The battle
management system will, through its software, define and control
the functioning of the entire defense and, thus, define its
effectiveness and establish performance requirements for weapons
and sensors. Three of the key conclusions follow.

Conclusion 1
"Specifying, generating, testing, and maintaining the
software for a battle management system will be a task that
far exceeds in complexity and difficulty any that has yet
been accomplished in the production of civil or military
software systems."

Conclusion 2

"The battle management system and its software must be
designed as an integral part of the BMD system as a whole,
not as an applique."

40

o,4•

Conclusion 3

"The problem of realistically testing an entire system,
end-to-end, has no complete technical solution. The
c oredibility of a deployed system must be established by
credible testing of subsystems and partial functions and by
continuous monitoring of its operation and health during .
peace time."

There are two battle management functions that the Panel judged
to be absolutely critical to the safety, credibility and
effectiveness of a END system:

o Authorized release of weapons, and
o Ordnance safety during peacetime and testing.

These two functions are even more critical because a significant
portion of a SMD system will be highly automated and will be
operating unattended in space.

t7,

L:,, 41 ,

7 71' _; -ql -.. 7r

C. SUNAR"

Of the DOD systems mentioned in the FY 85 RDT&E budget that
begin in 1985 or later, at least 80% require software. DoD long
range planning documents call for future technolugies and <4
capabilities, at least 70% of which will require software. .,

DoD systems currently under development and described in

future long range plans require software that is both more

massive and more complex than software developed previously. ,
The LHX automated cockpit is an example of software development

that has never before been done. Software in future battlefield

management systems will perform more functions, and handle
larger quantities of more types of data, more rapidly that
systems of today.

The increasing functionality of software demands a high
degree of software reliability. Software on the X-29 forward

swept wing aircraft, the A6-E Intruder aircraft, and remote
submersibles is critical to system operation. This is because a
human is not present to intervene, as in the case of remote

submersibles, or incapable of reacting fast enough as in the
case of the X-29 where flight control software makes some 40
adjustments each second in order to stay airborne. Software on --

the A6-E permits the pilot to navigate and drop bombs in bad
weather, functions he would otherwise be incapable of
performing. Systems of the future must be accurate, autonomous,
able to perform rapidly and continuously under all conditions.
All of these characteristics mandate reliable and adaptable
:ioftware.

Future plans project that systems such as Air Defense
systems will become increasingly modular in design to allow for
product improvements without major system redesign. Since

42

, .,

software is becoming increasingly responsible for system

flexibility and functionality, the ability to rapidly and
reliably modify software is significant.

Thus, the significance of the software component to the
achievement of the proposed DoD plans. But with the exception
of the DTST Ballistic Missile Defense Volume V, the plans
"reviewed made little explicit mention of software technology
improvement. Creating an appropriate software environment, the

report notes, is the key to meeting the systems goals. To
support these developments several proposed and on-goLng DOD

efforts are directed at Improving DOD software development.

Specifically the report indentifies the (STARS) Software

Technology for Adaptabler Reliable Systems Program, the
Ballistic Missile Defense Advanced Technology Center (BMDATC)
activities, and the Defense Advanced Research Project (DARPA)
Artificial Intelllgence-based efforts (36).

a g:

L1

43.k_,
t5SA2.. ± L_2~~ At

(1) DOD Digital Data Processing Study -A Ten Year Forecast,
Electronic Industries Association, Government Division,
Washingtone D.C.# October 1980, UNCLASSIFIED.

(2) The Military Software Market in the U.S., Report Number-
690, Trost & Suillivan, Incor New York, June 1979,
UNCLASSIFIED.

(3) MIL-STD-1679Ar Weapons System Software Develome~nt,, 22
October 1983

(4) N. Murray# A. Hopkins, J. Wensley, *Highly Reliable
Multiprocessors," AGARDograph No. 224, Integrity in
Electronic Flight Control Systems# edited by P.R. Kurshals.
Advisory- Group for Aerospace Research and Development,
April 1977, pp. 17.1-17.6. -

(5) Airland Battle 2000p Headquarters U.S. Army Training and
Doctrine Command, AXugust 1982, p.1, UNCLASSIFIED.

(6) Ibid., p. R-1.

(7) Ibid., p. 8-3.

(8) Ibid., p. G-5.

(9) Ibid., p. G-11.

(10) Ibid., p. D-6.

(11) Ibid., p. D-11.

(13) Ibid., p. D-14.

(14) Ibid., p. F-13.

(15) 1984 Weapon Systems-U.S. Army# Deputy Chief of Staff for
Re-search, Development, a-nd-Acq4uisition, 1984, p. 129,
UNCLASSIFIED.

(16) LHX Program Office, Army Aviation Systems Command, St.
Louis, MO, Mr. Bob Tomaine, AV 693-1268.

44

;' L"

(17) Op Cit., 1984 Weapon Systems-U.S. Army, p. 129.

(18) Major Mike Kendall, "Briefing on Airland Battle Doctrine
and Army Futures Concept," Deputy Chief of Staff for
Operations and Plans, Force Development Directorate,
Doctrine Force Design and Systems Integration Division, 15
May 1984, UNCLASSIFIED.

(19) Air Force 2000, Air Power Entering the 21st Century, U.S.
Air Force Office of the Chief of Staff, June 1982, p. 201,
SECRET.

(20) Ibid., p. 397.

(21) Ibid., p. 398.
(22) Ibid., p. 398.

(23) Ibid., p. 401.

(24) Ibid., p. 401.

(25) Ibid., p. 405.

(26) Ibid., p. 210.

I (27) Focus 21 Appendix-Technological Opportunities for Focus 21,
Department of the Army and Department of the Air Force,
Working Paper, p. 50, SECRET.

(28) Ibid., p. 31.

(29) Ibid., p. 36.

(30) Ibid., p. 37.
, .:. (31) Ibid . , p . 39 . ::

(32) Ibid., p. E-2. •:

(33) AFSC Vanguard Planning Summary, DCS/Plans and Programs, HQ
Air Force Systems Command, December 1983, SECRET.

(34) Navy Command and Control C2 Plan, Office of the Chief of
Naval Operations, Director Command and Control, March 1983,
p. ES-I, SECRET.

45

(35) Report of the Study on Eliminating the Threat Posea bv
Nuclear Ballistic Missiles--Volume V: Battle Managementp
Communications, and Data Processing. Brockway McMillin
janel Chairman, Defensive Technologies Study Team,
Alexandria, Virgina, October 1983, UNCLASSIFIED.

(36) Ibid.

46

CHAPTER III CURRENT STATE-O-PRACTIC"

A. INTRODUCTION

In 1982, a Joint Service Task Force on Software Problems

surveyed the entire history of prior studies and categorized the

difficulties that DOD faces in exploiting the full advantage of

:'.. computer technology. The Task Force drew the following

conclusions:

o Software represents an important opportunity for the
U.S. military mission.

o Technological leadership in software use and develop-
ment is a major factor in maintaining military
superiority.

o The current state-of-practice in DOD software develop-
ment and support has potential adverse effect on the
military mission.

o No "single problem" exists that can be overcome with a
single solution.

1, DODThis chapter describes the current state-of-the-practice in
DOD software development and support. First, the nature of
software development is described. This is followed by a

Sdiscussion of the results of a data gathering effort that was
conducted to determine the software engineering practices

currently applied to the development of defense systems
software. Detailed data presented includes those related to
project management, pre-software development activities,
software requirements definition, design, coding, and
integration. In addition, testing and evaluation, configuration
control procedures, and capabilities of software support

environments are discussed. The summary presents major

conclusions that can be drawn from the data.

47

3B. tTURN OF BO A DNVBNOWINMT AND MINTlUNNAN

Characteristics of DOD mission-critical systems includes

o large-scale, real-time, and fail-safe operation,

o long life with continual changes,

o development by large team and maintenance by a different
organisation.

o co-existence with older systems and interfacing withunique hardware

Such system characteristics tend to provide challenges as well

as constraints for the software development process.

The acquisition of major DoD systems is governed by the
5000 series of DoD directives and instructions. This policy is
further amplified and implemented in regulations that are

particular to each of the Services. The ultimate responsibility
for adherence to the policy, however, resides in the project
offices. Military standards have been developed for application

on development contracts to help ensure that minimum

requirements are met.

Military standards that define the software development

process include the proposed DoD-STD-SDS on Defense System
Software Development. It describes a computer software
development cycle that comprises a set of activities and their
associated products and reviews. The activities include:

o Software requirements analysis: the establishment of -

a complete set of functional, performance, and inter-.
face requirements.

o Preliminary design: the development of a modular, top-
level design from the software requirements.

o Detailed design: the development of a modular, detailed 71
design. i

48

- ,. * . - . .- . - -- . -- -.- -- .' .~ ~ . -- *-.~-- - -~-- .

o Coding and unit testing: the coding and testing of each

unit comprising the detailed design.

o Software integration and testinat the Integration of
units of code, informal testing of aggregates of

integrated units, and formal testing, as reqired.

o Software performance testino: the oondu, o-. formal

tests including the recording and analysis of results.

The presentation of the data gathering results can be

traced to these activities with a few minor exceptions. Data

related to the preliminary and detailed design activities are

combined, as are data related to test and evaluation activities.

In addition, general information about the projects examined and

data describing activities that occur prior to the initiation of

the software development and throughout the life of the projects

are included.

C. PROJECT C T TION

This section provides brief overviews of the projects

examined, the applications implemented in software, the

magnitude of the software development efforts, and the software -j
* development life cycles employed. Since anonymity was promised

to all subjects who cooperated during the data gathering effort,

projects and organizations will not be identified in the

following discussion.

1. Project Overviews

Detailed data were gathered on eight systems. Six of the
systems were major defense systems (3-Navy, 1-Air Force, 1-Army,

1-Navy/Air Force). The remaining two systems (1-NASA, 1-
"sip commercial) were examined to determine if any significant

differences exist between the practices applied to defense

system developments and those applied to other efforts.

F- 49

11-.9

The individual development efforts for the projects
examined were initiated in the late 1960's (2), the early 1970's

(3), and the late 1970's (3). Five of the systems are fully
operational at this time# two are operational but do not meet

the original expectations for the systems, and one is currently
undergoing follow-on testing to determine suitability for pvý

deployment. The shortest development effort spanned a period of
two yearas the longest required more than fifteen years.

2. Software Applications

Figure 111-1 categorizes the functions implemented in
software for each of the systems.

Although it is difficult to assign quantitative values to
the percentage of system functionality embedded in the software, #
in all cases it was agreed that without the software the systems
could not meet essential mission objectives. Furthermore, in
all cases, the software was responsible for the implementation
of functions that had never been attempted before -- even in
hardware.

The partitioning of systems functions between hardware and
software was usually based upon past experience, whether gained
during the concept development phase or on similar system
developments. In one case, the hardware was designed first and
thereafter influenced the functionality of the software. In
another case, the software was designed first (prior to the
choice of hardware). However, because of the lack of
understanding of the requirements and the migration of
functionality from the hardware to the software, the final size
of the software was double that originally planned.

3. Magnitude of Software Develowment efforts

Where available, estimates of the cost of the software
ranged from a low of $20 million to a high of $180 million.

50

]FU CIONS IMPLDUWTUD

VNumber of Systems 3 1 1 1 1 1

Tracking x x

Guidance &Control x x x x x

Navigation x x x x

Digital Filtering/ x x x
4--: image Processing

Computation x x x x x x

Command &Control/ x x x
Information Management

Built-in-Test x x x x x

Applications Support x x

General Data Processing

Figure I11-1

r 51

These are only estimates since software is not usually costed on
a line item basis. Another comparison of system/software
development effort can be made based on the number of people

"involved. These values ranged from 20 persons for one system to
a peak of 275 for another system. On four of the projects, the
software developers had experience with similar systems in the
past. in one case, it was the developer's largest by at least
two orders of magnitude. Only two of the development

organizations had groups specifically charged with looking for

and inserting new technology to improve the practice of software

engineering in the organization. In one case, different
managers would investigate the possibilities "from time to time

based on need."

Software size is another area where standard measures are

difficult to find. Some organizations measure software based on
the number of lines of code. Of these, some include commentsa
others exclude comments. Yet other organizations base their

measures on the size of the object code. When comparisons are

made, care must be taken that the word sizes used to relate the
object code size are consistent (i.e., 16 bit, 32 bit). Also
important is whether or not the measures reflect the size of the
operational or mission software alone or whether support
software is included. Sizes of software reported for the
systems under examination ranged from 11,000 to 900,000 lines of
code including comments for mission software only. After adding
support software, the original 900,000 lines of code increased
to 2,150,000 lines. When measuring the size of the object code,
values reported ranged from 16K words of operational software
for one system to 7 million words including support software
for another system. The percentages of code produced during a
system development that were actually delivered to the customer
ranged from 25% to 100%.

52

Finally, the percentage of code in a system that is reused
from other development efforts was addressed. Four of the

systems examined reported no reuse of code. One reported that
approximately 40% of the operational software (80% when
including support software) was reused from previous development

efforts. Another system reported reusing 18 out of 25 modules

from a previous system.

4. Software Developuent Life Cycles

For six of the systems, initial plans were to follow the
standard waterfall development process (requirements definition
. design - code - test). Of those six, three later changed over

to some type of incremental development or iterative

enhancement. Another of the six followed a parallel development

where code was written from the requirements documents and the
design was developed "after the fact." Only one of the six
followed the original waterfall plan to fruition. -

It should be noted however, that that system is now in a
support phase where it is enhanced on a continuing basis to meet

the changing threat and incorporate new technology. The other
* two systems planned up-front to follow a "build a little, test a

little" approach to software development - one beginning with
the detailed design phase of development; the other during the

coding phase.

* ~D. PRAUNCT MMRAGMIZU

In this section, techniques used to estimate software
development costs, staffing requirements, and milestones and

-schedules are presented. Data collection and tracking ILI

mechanisms and procedures for updating estimates are also
discussed.

53

I-

1. Costs

Cost estimation techniques applied on these programs were

based on historical data, expert judgement, and analogy. Some
of the combinations employed were:

o The size of the software and the productivity rate of

the organization were estimated based on experience gained
during the concept exploration phase, expert judgement, and

analogy to other development efforts. In addition, both

bottom-up and top-down techniques were employed independ- ' -

ently to verify the estimates. This was the first time

these techniques were used. Prior estimates had always

been those developed on the "back of the envelope".

o Commonly available costing models were applied .
(Boehm's COCOMO, Putnam's SCM), and results tempered
with engineering judgement. This particular organization
has been using ihis method for the past 3 years.

Previously, estimates had been totally based on historical
data.
o In-house "rules of thumb" were applied. The cost of
key functions was estimated and combined bottom-up.
Complexity of the units was estimated and factored into the

cost. Lifecycle factors were also included. These - -

estimation efforts benefited from the use of internal

tools that were constructed and tailored to the project
based on the experiences of the contractor.

o Cost of software was estimated based on a previous
similar project. Specific differences between the past and
current project were taken into account in the estimation
process. in addition, a small-scale model software -

development was undertaken to further estimate the effort.

Regardless of the technique employed, results consistently
over-estimated productivity and under-estimated required

effort.

54

Projects also reported that data was collected on a
continuing basis during development efforts so that estimates
could be updated and refined. Update cycles ranged from

ji, iestimating the cost to completion on a monthly basis to updating
the cost of the overall project once a year as required by the

budgeting process.

The amount of data collected for tracking purposes varied
greatly by the organizations. in one case, "programmers' daily

activities" were tracked. The following describes the other

extreme:

o Software budget measurables (could be directly linked

to a deliverable) and the level-of-effort budget spent were

-r tracked and used to calculate the variance between the
actual costs and the estimated costs. In order to

" determine what items to monitor, each major program in the
Work Breakdown Structures (WBS) was assigned a cost account
for each of its deliverables (specification documents,
design documents, code, etc.). These accounts were further
subdivided into work packages and measurable work package
tasks (designing, coding, testing, etc.). Hours and
dollars were budgeted and tracked on a monthly basis at the

* level of the measurable work package tasks. Level-of- -

"effort tasking was kept to a minimum to facilitate accurate
cost accounting.

At least two of the organizations had developed tools that
- were tailored to their specific business environments for the

purpose of tracking and reporting desired cost data.
One organization had built a database of cost information
du•ing previous projs,'ts. This was used in the cost estimation
process. Another organization was building a database for
future use that contained records of the level and type of
effort for each software component handled on a weekly basis.
Yet another group was using the actual data to "fine tune" the

55

internal cost estimation models and the parameters used. This
group felt that the costing process was "somewhat guesswork" --

the key was to collect actual data and refine the estimates as
the project progressed.

Half of the organizations experienced severe cost overruns._
on their projects. In one case, discrepancies between

estimated and actual costs were attributed to programmatic
problems, changing requirements, and management inefficiencies.
In cases where the software was delivered within cost, the -
importance of gathering data and updating estimates throughout '1

the program development was stressed.

2. Staffing

Approaches used to estimate staffing needs were based upon
the cost estimates derived previously and the perceived project
needs or demands. In one organization, individuals were
reassigned and temporary employees hired on an "as needed"

basis. This method resulted in an increase, in a very short
period of time, from approximately 20 people to a peak of 70
people working on the software design. It was later
demonstrated that the "need" was for time -- not people.

Similarly, another organization began staffing its project
to meet the schedules. However, the practice was discontinued
because of the instability injected int," the development
process, especially when requirements changed. Thereafter, a
"flat" staffing profile was maintained (minor modifications were
made on a quarterly basisl major modifications once a year). The
use of a constant workforce substantially influenced the
determination of project schedules and priorities.

A third less extreme approach, involves the use of matrix
management. In this organization, a somewhat stable pool of
personnel exists from which to draw. Although this may still
introduce some instability into the development process, the

56

results are not as severe as hiring new or temporary personnel

"into a strange environment.

None of the organizations examined reported any special

tools or data collection procedures related to project staffing.
Any tracking which occurred was a by-product of monitoring cost

and schedule.

K. 3. Milestones and Schedules

"The level of granularity in the schedules and the

* .• approaches employed to develop them varied among the
organizations. The following paragraphs describe some of the

"techniques used.

o On the first program, the government's major
milestones (PDR's, CDR's, etc.) were the software

"2 development milestones. Experiences gained reflected the
need for day to day tracking of all program elements and

close monitoring of schedules to allow early recognition of 7.

problems.

o The second program determined schedules and
milestones based upon the available money. Procedures have

(recently been updated such that demonstrated progress also
influences the program schedule. This program has had
significant problems throughout its development. Although
"in-house tools now exist to aid in the scheduling process,
their applicatlio has suffered from a lack of confidence by
program management personnel.

o The third program made a very strong commitment to a
final delivery date. Intermediate milestones were derived
in an ad hoc manner as a result of task planning, manpower -

"analyses, and prototyping performed to estimate the size

and complexity of the effort. As development progressed,
"numerous changes in requirements and development strategies

57
4 ,

voided the original schedule. In addition, the prototyping
did not accurately reflect the complexity of the production
system. The original delivery date was met, but with a
poor quality product with reduced capabilities. This

situation was remedied by delivering periodic enhancements
to the product until requirements were satisfied. - r

0 The fourth program's schedules and milestones were

based on program demands and model (PERT/CPM) projections.

"Conceptual schedules" were updated once a year.
Development schedules were updated quarterly. Detailed
schedules were updated as required. Occasionally, overtime
or the cancellation of planned activities was necessary to

meet the schedules, however, the overall software -

development was regarded as an example that software is not

always late, short of capabilities, and short of quality.

C The final program constructed a matrix where the

rows were the deliverables and the columns were the phases
of the software development lifecycle. This was placed on
top of a calendar which showed the hardware availability
dates, major government milestones, and the final software
delivery date. After allowing six months for integration
prior to the final demonstration, the time available for
the software development could be derived. Several evenly
spaced, incremental deliveries to the government were
scheduled such that the most difficult and critical
capabilities would be developed first. Those areas which -

had unstable requirements were scheduled later in the

- *1

• 1

58

K•A

development whenever possible. For each incremental
delivery to the government, several intermediate deliveries

from the software group to the systems engineering group
within the organization were also scheduled. In addition,

detailed schedules were developed such that each person had

an average of one milestone per week.

* The "micro-schedules" changed weekly, but all
incremental deliveries to the government occurred on time
(in some cases, requirements satisfied by an increment were

cut back to allow on-time delivery). The final delivery of

the total software system also occurred on schedule. Items
monitored to track progress included planned and actual

completion dates for coding, unit testing, string testing, etc.
of each function. In addition, the "earned value" of the
product was monitored. When determining the earned value, an
element was not included in the calculation unless it was "com-
plete (i.e., an element was either 100t coded or 0% coded,
90% was not valid). Tools used to develop schedules and
track the progress against them were essentially the same as

-- those used to monitor costs and staffing. PERT had been
considered for use and rejected because of the amount of time
required to do updates.

3. PRE-SOFTWARE D3VOI W IT

Prior to software development, numerous system level
activities are performed. In terms of the DoD major system ."

acquisition process, the Concept Exploration Phase (Phase 1) and
the Demonstration and Validation Phase (Phase II), which

59

culminates in the definition of the system requirements, may
both be complete prior to the initiation of the software . ,

development process. This section discusses concept exploration

and system requirements definition activities.

1. Concept Exploration

The basic technique used for concept exploration was
prototyping. Variations employed include prototyping the
"system, prototyping major subsystems, and competitive proto- -

typing. In addition, trade-off studies, feasibility studies,

and architecture studies were described as activities
undertaken during the concept exploration phase. Simulations

and simulators were the primary tools used to support these

analyses.

"One project noted the importance of planning for the

iterative nature of systems and requirements definition. In

this case, the formal completion of concept definition was

proclaimed per the schedule. In actuality, however, redefintion
and iteration of the requirements continued throughout the life
of the project. Another organization commented on the
difficulty of discriminating between the "real" requirements for

a system and those that are "passing fancies".

2. System Requirements Definition

System requirements definition tends to be a continuation,
or a more formal instantiation, of the concept definition phase
of development. The formality appears in the form of

documentation produced for the purpose of contractually
specifying a system which is to be built. It is also at this • "

time that the requirements begin to be reviewed by the

appropriate interested parties.

60

Six of the projects followed the process described above.
in one case, this phase consisted of simply stating con-
straints on the accuracy of primary system functions.
Another project specified the software requirements first,
utilizing a top-down approach to developing a partitioned
hierarchy. The top level of the hierarchy consisted of the
architecture, followed by the functions, the functional t.
relationships, and, finally, the detailed descriptions. This
method was similar to that employed by the organization on
previous efforts, but more formal. It spanned several years .--
and involved several hundred people. k

The primary notation used to describe the system require-
ments was English text (no formal requirements languages were
used). One project used system data flow charts. Another
utilized narrative text supported by optional flow charts, L
interface tables, and dependency diagrams. Tools used in
support of this process included word processors. The
deliverables associated with the system requirements phase

were the Type A-System Specification and the Type Bl-Prime
, Item Development Specification.

F. SOFTWARE RROUIRUIEENTS DEFINITION .

Four of the projects described the software requirement• .
definition phase as an outgrowth of the system requirements

"* definition phase, which itself had been a continuation of the
concept definition phase. In one case where there was a change
in activities between the concept definition phase and the

* :system requirements phase, the software requirements definition
activities were merged with those of the system. This was
necessitated by the msoftware-first" approach that was being
employed. For another system, the prime contractor received a *

L 61

draft software requirements document that was then updated by

the prime's engineering group (rather than the software

group) for changes in the requirements resulting from perceived

changes in threat. Only one organisation described a procedure 7.1

involving detailed examination and study of the software-

unique requirements. In this case, extensive modelling,

simulation of algorithms, sensitivity analyses, and timing

studies were conducted to refine the software requirements.

in addition, formal procedures were put in place to facilitate

the clarification of system requirements as necessary for the

specification of software requirements. One additional project

also used simulators at this point to verify the software

requirements being developed.

The notation used to express the software requirements and

the tools used to support this phase did not change signifi-

cantly from previous phases. English text and text processing

systems were the predominant technologies applied. In one case,

however, it was reported that PSL/PSA was used. In another, P

NRL's SCR requirements specification methodology and notation is

being employed for enhancements. Finally, a verification and

validation contractor was applying a SREM-like tool to the

software requirements produced by the prime contractor for its

project.

During this phase, the review cycle normally associated

with a software development begins. Two of the projects

employed independent verification and validation (IV&V)

organizations for the purpose of scrutinizing the software being

produced. In one case, this function was performed by an

independent contractorl in another, the future support

organizations were involved. One project employed a *---

verification and validation contractor (as noted above). In

this case, independence did not exist between the V&V contractor

62 SC

and the prime since the V&V contractor was encouraged to deal
directly with the prime contractor and even developed some of "

1 ~.'0 the software. When neither IV&V nor V&V organizations
existed, quality assurance (QA) organizations supplemented the
reviews performed by the development organizations. One
organization commented, however, that the QA organization
suffered from the *good old boys* syndrome -- to the

detriment of the effectiveness of the reviews.

The minimum review, at this point, generally consisted of
tracing each software requirement back into the system

requirements document and constructing a traceability
matrix. Other attributes which were searched for during the

reviews included content, completeness, accuracy, and con-

* sistency.

The deliverables associated with this phase were the
Software Requirements Specification, the Program Performance
"Specification, and the B5-Computer Program Development
Specification (or Part I Specification).

G. DESIGN

Six of the projects examined used a top-down approach to

design their software. Two of these were described as top-down
modular design techniques; three as top-down structured design
techniques. In one case, two levels of refinement were
performed: from high level to detailed modules and from
detailed modules to functions. Exception handling was also

given a lot of attention. Another of the systems was designed L...
using fault tolerant techniques: redundancy, checks on inputs, 4 .
error detection and recovery routines, and reconfiguration and
reload capabilities. This system also designed in a common

system executive and common error handling routines. In order
to facilitate future enhancements and the ability to operate in

* a degraded mode, each module composed either part of one or one

63

complete element function. For one project, a large degree of
importance was placed on avoiding timing and efficiency problems j
in the design of its asynchronous system. The approach employed
was to attempt to design the system such that there were no time

criticalities.

The two remaining systems did not supply great detail on -

their design processes. One simply stated that the software
requirements for the functional areas were elaborated into
functional specification documents. The other divided the
requirements into functional modules and assigned them to
different groups for implementation. The primary concern for

this organization was the efficiency of the implementation.

The notation used to express the software designs included

English text, program design languages (PDL) (4), flow charts
(3), block diagrams (1), data flow diagrams (1), pseudo-code
(1), hierarchical input-process-output diagrams (HIPO's) (1),
and prototypes (1). Relatively few automated tools were
available for use during the design phase. In general, ..
developers had access to standard word processors and editors.
One organization reported continuing its use of PSL/PSA.
Another employed simulators to evaluate the prototype designs.
The effort expended during this phase of the development -

averaged between 30 and 40% of the total software budgets.

The review cycle initiated in the software requirements
definition phase continued in the design phase. Again, the pre-
dominant technique employed was to trace the design back into -

the software requirements document, and, in some cases, into the
test planning documents to ensure complete coverage of the
requirements during formal testing. One organization relied
solely on the results of the formal government PDR's and CDR's
for an evaluation of its design. Peer reviews were not held
since the designers were felt to be highly qualified people.

64

t1
I

i K

Another held structured design reviews. One organization
described formal design inspections which required 6 to 10
people for 2 to 4 hours when evaluating 100 to 1000 lines of
design. At the conclusion of the inspection# a pass/fail
decision would be made concerning the maturity of the design.
Data was gathered during the sessions on the number and type of
errors found and the effort required to conduct the inspection.

In two cases, in addition to the internal developers'
i reviews, QA organizations conducted reviews: one was non-

technical, the other was concerned with the accuracy, L

consistency, and flow-down of the design from the requirements.
Two organizations also had their designs evaluated by IV&V
organizations. Supportability was the key concern for one of

. the projects since multiple organizations were planned to
perform this function after deployment. The only metrics
calculated which influenced the software design was that of
mean-time-to-repair for one system.

The following comments were made about the formal
government reviews:

Design reviews become instructional sessions when
participants are not prepared.

User attendance at PDR's is beneficial -- it gives the
users an opportunity to see what they will be receiving. User
attendance at CDR's, however, can cause problems -- they may
"interfere with the progress being made by the analysts.

The deliverables associated with this phase of the
development included the Program Design Specification, the
Program Description Document, the Type C5- Computer Program
Product Specification or Part II Specification , Data Base .
Design Documents, and Interface Control Documents.

L
-U

I I~it-65

li U*

•,'u••- ¸•' •L . .• • .._% .' .• , • • • • , ,•, , .,i,, • •i •. '•: •• • ;"••' /* .-. . . ,•. .** • • .*. *.- V.•

H. CODING

Six of the projects examined were developed and coded using
structured programming techniques. In addition, two described a
top-down development, and one a top-down message flow
development. In one case, it was noted that exceptions to the
usual standards of structured programming were allowed when
necessary because of "complex real time requirements." This
organization also allowed multiple entrances and exits to the
modules.

Coding standards applied on the projects addressed the
following areas: liberally commenting the code, including
preface blocks or preambles, labelling and naming conventions,
maximum levels of indentation, and lines of code in a module.
The most common source of these standards is MIL-STD-1679. In
addition, one project required that each equation in the code be
cross referenced to the requirements specification. Other
standards applied pertained to communications protocols, and
timing and core reserves. One organization reported that prior -

to 1981, no programming standards were applied on its project.

The progamming languages used included various dialects of
CMS2, JOVIAL, FORTRAN, PASCAL, COBOL, SPL/SPL1, a special
purpose high order language, and assembly language. Two of the
projects reported using 100% assembly language for their
applications due to timing and sizing constraints. In other
cases, assembly language accounted for from less than 1% to 30%
of the code. Two projects reported the requirement for a waiver
whenever assembly language was used. In those cases, assembly
language was only used for interrupts and I/O capabilities -- .
"whenever the compiler couldn't handle the job". For one
project where support software was developed in addition to the

66

mission software, "all languages available" were used in the
development of the support software. The mission software was
developed using a special purpose high order language (85%),

supplemented by assembly language (15%). One group reported
that this was their first use of a high order languagel another
reported that without the high order language, it would not have
been possible to meet the projects' budget and schedule. On one
project where only assembly language was used, the code
originally contained no line numbers or comments. On the other
100% assembly language project, macros that enabled conformance
to the principles of structured programming were used.

The automated support available on one of the projects

consisted of an assembler. Two projects reported the use of
editors, compilers, and debuggers. Three projects used
preprocessors to enforce coding standards. One group felt that
"as the size of a project grew and the number of people
increased, so did the need for standards and enforcement.
Furthermore, it was felt to be impractical to attempt
enforcement of coding standards through the use of audits --

automated tools were necessary. Other tools applied on these
projects included listings formatters, global cross-reference

, •and statistics generators, multitier libraries, "As-Built"
documentation generators, and simulators. The documentation
generator would produce narrative comments, structured flow
charts, and module procedure flows based on the written code.

Six of the projects also described the use of code revie,,,Ts
to evaluate the implementation of the software. Three of these
applied formal Fagan code inspectionsa two used peer

* walkthroughsp one used informal reviews by section leaders. In
three cases, QA groups audited the code for compliance with
standards. Two of these were formal audits using checklistsa

67p

67 ' ; 67

-I-.

- 7 - 7 -7 __1--r.---.-- f - 7

r•ne consisted of reviews of documentation and spot checks of

listings. IV&V groups performed code analysis for two of the
projects. In one case, this took the form of tracing the
requirements into the code and vice versa. In the other,

critical algorithms were independently derived mathematically
and the corresponding code analysed. In one case, it was
reported that the level of formality appied to the code review
process varied with the size and complexity of the code.

The deliverables associated with this phase of the
develop.ment included Program Packages (source and r'Lee.t cce

and listings, and cross-reference listings), and Version
description documents. The amount of effort expended was

reported in general to be 10-20% of the total software effort.

I. *&'WEGRATION

As described earlier, two of the projects planned to follow
a "build a little, test a little" approach to software -

development. In both cases, the integration strategy was to
release usable increments, each a superset of the previous . ,

release. One organization had a list of heuristic "do's and
don't's" to guide them in the choice of capabilities to be

implemented in an increment. Other integration strategies
employed included top-down; bottom-up, one module at a time; and
that of ralying on experienced programmers to perform the
integration task. Finally, one system described a process of
migrating the software from a simulated environment to the .
operational enviroment. The four steps taken utilized:

(1) Actual software plus a lot of software diagnostics,
minimal aotual hardware.

(2) Actual software, actual hardware, a lot of

diagnostics.

(3) Actual software, hardware, and users (in training).

68

.77 -- ,*- -- :-7ý 7-- -- 7--:71ý-- - - - -- ,--.

(4) "Full-up" system.

It was felt that this appruach to integration, though
thorough, involved too much duplication of effort. In a seven

-' Kyear period, approximately 1,000 people were involved in the
integration of this system.

J. TESTING AND EVALUATION

"In general, the software developments included at least
four stages of testing: unit or module testing, software
integration testing, software/hardware integration testing, and
acceptance testing. Additional levels of testing were
conducted when the developments included incremental
releases and when IV&V organizations were charged with con-
ducting independent tests. In the following, we will
describe the various levels of testing and strategies
"employed on the projects examined.

ven ot the projacts described some form :of unit or module
testing. On two of the projctz, the de"-sion of whether or not
to perform unit testing and, if prýCrmed., the strategy and

extent of the unit testing was left to the p'eiogat.ve of the
individual programmers. The fear of releasing bad code for

L "all of the world to see" was felt to be enough incentive that

. an appropriate amount of testing would take place at this
level. In another case, module testing was "combined" with
software integration testing. After experiencing severe

-- problems with this approach, the testing of individual modules
was reinstated. This organization tried executing all paths
at the subroutine level but decided that this was not cost
effective. It noted that there was 4room for improvement" in
the area of module testing. Another project described its

S..approach at this stage as testing to the detailed design
documents. This organization initially skipped some module
testing but eventually went back and pexformed the omitted
tests. F.nally, one group attempted to achiove 100% statement

69

coverage during module testing, as well as performing stress

and extreme value testing. However, no audit trails existed to
allow the reconstruction of the tests or the verification that

goals were achieved.

At this point, the two projects that had initially planned -

incremental developments inserted an extra stage of testing
into their development processes. In one case, coverage
analysis was performed. In the other, this level of testing was
conducted by the programmers' managers prior to releasing the
software from the department. This stage was followed by

another additional stage of software integration testing. This
second stage comprised the approval to proceed to the complete
increment testing.

The next stage of testing is the common software
integration testing or tests of "large" pieces of software.
This level of testing is usually derived from the software
requirements specification. For the systems undergoing

incremental releases, this stage of testing was performed by the -- -

recipient of the increments (in one case, the prime contractor
received the increments from the software subcontractory in the

other case, the government received the software from the
prime contractor). * For one of the non-incremental --

developments, a separate test group constructed test matrices
and a compliance matrix. It also defined nominal and abnormal
inputs for the testing at this stage.

Software integration testing is followeO ý)y
software/hardware integration testing. This iL usually firmal
testing based upon functional specifications and performed by
contractors' engineering organizations or separate test groups.
Two of the projects reported that QA personnel witnessed these
testso in one case, the customer also witnessed the tests. One
group described this level of testing as testing every
tequirement until it is "OR".

70

The final stage of testing was system level testing. In
two cases, this was described as extensive testing of system
level functions by systems engineers. For one project,

"K scenario tests were executed for all functions in simulation
labs. For two other projects, boundary limit tests, stress
tests, and error response tests were conducted in the process
"of evaluating the system functionality. In at least one
case, this level of testing was a subset of previous tests,
rerun to satisfy the final requirement prior to system
delivery.

Independent testing performed by IV&V organizations was
conducted for two of the projects. In these cases, the tests
were designed to concentrate on areas of concern which were
uncovered during documentation analysis, reviews, or analysis of
testing performed by developers.

"Four organizations documented the testing process with test

E plans, procedures, and reports for formal testing only (formal
testing is usually the final system level testing and, in some
cases, very high level integration testing). Two of the
organizations also used test specifications. In one case,
"formal test plans were reviewed and approved by the customer;
"in another case, this was the responsibility of the QA
organization. When formal testing was witnessed for one
project, the observers recorded any anomolies and logged changes
to the test plans and procedures. Only one organization

- ,described documentation of the module level testing process.
This group maintained programmer's notebooks which contained
unit test plans and procedures. However, it did comment that
the level of formality in reporting testing information
increased with the level of the test.

By far the most common tools used to support the testing
process are simulators and stimulators. Unfortunately, these

71

tools are usually project specific and cannot be applied

elsewhere. Two organizations also described data

extraction/reduction capabilities and file comparators
applied during testing. One group used a data compare facility

which included test scenarios and results expected for given

time periods. Single organizations reported the use of unit

test drivers, coverage analyzers, and homemade tools for test

generation and execution.

Five organizations described error analyses conducted. Two

groups categorized errors in terms of criticality (in one

case, the categories described in MIL-STD-1679 were used).

Errors were also tracked according to which test group found the

errors, what level of testing was achieved, and the amount

of time spent testing. One group also analyzed the trends in

the number of errors discovered after new releases of the
software. Two organizations specifically tracked and analyzed

error reports for the purpose of isolating "problem areas" in

the code or organization.

in addition to error analysis results, cyclomatic

complexity metrics were used by two groups to guide the testing
effort. Another set goals for mean-time-between-critical events

and interrupts to determine when the software quality was
sufficient.

K. CONFIGURATION CONTROL

The importance of configuration control in the software
development process is generally recognized. Six of the

projects described a similar, formal change control proces s.
Each involved a form (computer program problem reports,
software problem reports, program trouble reports, software
trouble reports, software change proposals, or software
change requests) and various authorization boards
(Configuration Control Boards, Software Change Request Boards,

72

.. ~. --- - -7

4 ,

Software Change Review Boards). The forms were used to provide
information identifying the requested change or reported
problem, its feasibility, its impact on cost/memory/timing, the

1, recommended release in which the change should be implemented
K t(if at all), and other information important to the decision and

tracking process. The boards were responsible for reviewing
the information, analyzing the changes and deciding when the
change should take place. Three of the organizations had placed

the configuration control forms online to facilitate reporting
and tracking this information. In one case, any time the -

software was changed, a comment had to appear in the code
referencing the configuration control form number which

authorized that change.

Although the configuration control process described above
was similar for the six systems, the items actually controlled

* and the point in the development process when the items were

placed under configuration control differed. Examples follow.

o Only the source code was placed under formal
configuration control. The software requirements
specification was updated informally via the use of

change forms. The design documents were not updated.

SL This organization had originally planned to control all
products but decided that this was too costly and
impractical.

o Only the software requirements specifications were base-
- lined. This occurred when the organization was "ready". A

"lesson learned" by this organization which was passed on

during the information gathering discussion was that
configuration management and control is needed for all
aspects of a software development program.

o The software requirements specifications were placed
under configuration control at the completion of the
CDR. Source code was placed in libraries controlled by the

L QA organization after unit testing was complete.

"73

o The software requirements specifications were placed
under configuration control "early". Once a piece of

software had completed unit testing and the initial •
stages of integration testing, it was placed in a test

library which was under configuration control. After -

successfully undergoing the remainder of testing, the
software is placed in a release library. The
hierarchical library system used both controlled access
to the pieces of software and tracked the changes made.

o A layered approach to configuration management consisting
of six levels of control for interim and final products
was employed. It was felt that, in this case, the
iterative development necessitated a high level of -"

technical involvement. Fifteen to twenty percent of the
total project staffing was allocated to configuration
management.

L. SOFTWARE SUPPORT ENVIRONMENTS

This section provides an overview of the hardware used
during development and post deployment software support
capabilities.

1. Hardware Support

Three of the projects used VAX 11/780's with VMS as host
machines during their development efforts. One project used an
IBM 370 with VM/CMSj another used an IBM 370 batch system with
cards as the input medium. Another project recently acquired
a VAX 11/780 with UNIX to replace its batch system. Two of the
projects used the target machines, which were specifically
designed to be embedded computers, as host machines during
the development. The target machines included standard Navy
hardware (AN/UYK-7's, AN/UYK-20's, and AN/AYK-14's), and other
embedded computers built by IBM, Licton, and ROLM.

74

2. Pot Oagnt j ftw~are figrt

Four of the projects examined are being supported after
deployment by thi original development contractors. One of the
organizations is in the process of developing user friendly
tools so that personnel who do not have an extensive knowledge
of the system will be able to maintain it. Tools available

"K to aid in the support phase include those used during

development plus special purpose reconfiguration tools. These

have been integrated to share common information and databases.

in addition, maintenance specifications are being developed to

capture corporate knowledge, cc.municate assumptions made during

-the design process, and supply guidelines for the maintenance
process. Portions of the code will be redeveloped, rather than

modified for future changes: only if there is a potential

for major savings in the areas of memory usage or

maintainability. This system has been opa-atLonal for less
than 5 years and is expected to remain operational for another

15-20 years.

"The remaining four projects are being (or will be)
supported by the government, in some cases with contractor

.•support. On one of the projects, new tools were developed for

post deployment support. It should be noted, however, that the
K tools developed do not support activities specific to the PDS3

"environment. In fact, it was felt that the same tools would
-- have been beneficial during the initial development. Tools

now available include an assembler, a memory

loader/verifier, and simulation laboratories. In addition, the
original documentation was of poor quality and has been upgraded
or, in cases where it did not exist, created. This system has .
been operational for approximately 15 years and is expected to
remain operational for another 5 years.

75

One of the other systems requires further discussion. This
system is in the process of being transitioned from the
development contractor's care to the government's care. Because
of the applications implemented in the software, it will be sup-

ported by three government support activities. One of these
activities has software development experience and the necessary
equipment; another will be supporting software for the first
time; and the third has experience, but little in the way of
automated support. Though the support activities were named at
the initiation of the project and performed IV&V activities on

the software they were to support after deployment, it remains
to be seen if this division of responsibility will be an

effective way to approach the post deployment software support
for this project.

K. SUMMARY

Of the eight systems examined, five of the development_-
efforts are considered to be "successful"; three are not.

Although strict cause/effect relationships cannot be derived
from the data gathered, this summary highlights a variety of
interesting aspects. For example, a common belief is that

developments that utilize new technology will succeed when -

others fail -- the data does not support this conclusion.

Furthermore, no major differences were discovered between the

DOD developments and the NASA or commercial development. Each

effort encountered difficulties that had to be dealt with. The -

solutions applied were not unique to the non-DoD world.

The capabilities implemented by software are becoming more

varied and more critical to the successful accomplishment of the
military mission. In each of the cases examined, the software
was being used to implement functions that had never been

76

attempted in the past. The susceptibility to requirements

definition problems increases when a solution is being attempted

I •for the first time. In spite of the importance of the

requirements definition process and the great amount of

Ii* influence that it has on the ultimate success of the program,

few systematic techniques and little automated support existed

for these activities. Although, as a minimum, the requirements
are usually traced into the design, code, and sometimes tests,
even this analysis is predominantly conducted with little or no J
automated support.

The single overwhelming commonality that existed among the

systems investigated was the requirement to accommodate change.

Refinements to problem solutions and changes in the environment

r in which the system will be deployed all require modifications

to the software. As a result, whether planned or not, all

software undergoes some type of incremental development or

4" iterative enhancement.

Estimates of software costs, staffing requirements, and
schedules do not accurately reflect the true needs: the sizes
of the efforts are underestimated and the productivity of the
people is overestimated. Errors in either of these estimates
have similar results. Combined, the effects are even more
serious. The estimates may in fact be accurate in a stable

environment. However, as reported above, the environment of
software development and deployment is not a stable one: the
one true constant is that of change.

The technologies applied during software development can
usually be traced to the requirements of the military standards
that have been referenced in the appropriate contracts. In

general, developers are not rewarded for exceeding the --

technological requirements of the standards, and these did not

77

r - ~r . W - . •

do so. The primary variance related to the use of technology in -

software development is found in the level of discipline and

formality with which the technology is applied. Figure 111-2

provides a summary of the technological state-of-the-practice

encountered. Further aggravating the situation is the fact
that, in many cases, software is not treated as a manageable

entity. This may stem from a lack of understanding on the part
of management and a general feeling of discomfort when dealing

with software.

The' transition of responsibility for software support from

the developing organization to the Post Deployment Software

Support activity does not usually occur without problems.

At times, the data gathering effort was hampered by the -

unavailability of data. There were two reasons for this:

either the data was considered to be "sensitive" or it did not

exist. Even when data was available, it was not always useful
for comparison purposes, as was the case with the measurements

of software size. The field of software development and

engineering continues to be plagued by a lack of generally
accepted quantitative measures.

The current state of practice is experiencing problems in

meeting current requirements. Programs have difficulty defining

requirements &nd requirements are constantly changing as

software becomes increasingly responsible for implementing new
functions. Other problems are in budgeting, staffing, and

scheduling and with product quality.

78

78

CURRENT STATE-OF-PRACTICE OVERVIEW

Activity Method Formal Automated

Project Management

Cost Estimation 4 2 2
and Tracking 4 3 3

Manpower Estimation 4 1 0
and Tracking 3 2 3

Milestone Estimation 5 2 2
and Tracking 2 2 1

Systems Requirements 6 1 3

Software Requirements 4 2 2

High Level Design 8 7 2

Detailed Design 6 6 2

Code 5 6 8

Unit Test 7 1 7

Integration 6 4 8

- System Test 8 8 8

Li Configuration Control 6 6 4

Method - Identifiable Method

Formal = Documented, Followed, and Verified Method.

Automated - Automated to some Degree.

Figure II-2

,79

CHAPTER IV TECHNOLOGY CASE STUDIES

A. INTRODUCTION

We have reviewed the growth and propagation of a variety of
software technologies in the hope that we can discover the natural
characteristics of the process as well as the principles and
techniques useful in the transition of modern software tech-
nology. What we have looked at is the technology maturation
process, the natural process by which a piece of technology is
first conceived and shaped into something usable and then "marketed"
to the point that it is found in the repertoire of a vast majority

of professionals.

A major interest is the time required for technology
maturation--noting what time is required for various activities
provides some baseline data with which to measure the effect of
our transition strategies. But our prime interest is in finding
out what actions, if any, could accelerate the maturation of
technology, in particular that part of maturation that has to do
with transitioning the technology into widespread use.

Technology transition activities are the heart of any tech-
nology improvement program. These are planned, overt actions
taken to move a piece of technology into wide-spread use. They
involve primarily the packaging of the technology so that it is
well-received, the active insertion of the technology into some
initial, high-impact arenas, and the ultimate dissemination of
the technology to a broad community.

The details of our investigation (1-13) are available in
Appendix G. The study of knowledge or technology maturation is
a complex subject in itself (e.g., 14, 15). The basic technique
we used to avoid some of the more obvious known pitfalls was to
use persons highly knowledgeable in the technologies and their
use to develop the case studies and summarize them.

81 Preceding Page Blank

In this report, we provide some general observations on
software technology maturation, the basic context needed for
transitioning technology into widespread use, and the activities
that can inhibit or facilitate the widespread propagation of

technology throughout the professional community.

B. T OLOGIERS Is IGATSD

Fourteen software technologies were the focus of this study.
They are: - -:

o knowledge-based systems

o software engineering

O formal verification technology - .

o compiler construction technology

0 metrics

o abstract data types - _

o structured programming

o SCR (Software Cost Reduction) methodology

0 DoD-STD-SDS (Department of Defense-Standard-Software
Development Standard) . .

o AFR 800-14 (Air Force Regulation)

o cost models

o Smalltalk-80

"o SREM (Software Requirements Engineering Methodology)

o Unix

82

I:'II

Some of these are very specific instances of a technology,
such as the Smalltalk-80* system, and some are very broad tech-
nology areas, such as verification technology.

Four different types of software technology are represented
in our sample. First, our sample includes the major technology
areas of metrics, software engineering, compiler construction
technology and verification technology. Advancements in major

areas such as these depend on coordinated advancement in several

interrelated areas, many of them frequently theoretical in nature.pk
In addition, only a small segment of the technical community
will directly use the technology in these areas. For example,

- few professionals actually generate compilers but virtually all
of them use a (semi-automatically generated) compiler in their
work.

The second type of technology that our sample includes is
technology concepts such as abstract data types and structured
programming. This type of technology is conceptual in nature
and usually ends up as a basis -or a variety of well-defined and
usable pieces of technology. For example, structured program-
ming led to the development of structured analysis.

L S Methodology technology is the third type found in our sample.
This technology addresses how to develop and support software
most effectively and is a mixture of technical and managerial
principles, practices and procedures. This is basically "second-

_ level" technology that provides the rules and guidelines

* Smalltalk-80 is a trademark of Xerox Corporation.

83

*1

S.., ' • • . . r , •. . ,E:• • ~

71

for how other technology can be beat employed in the development -

and post-deployment support of software. The instances of thib
type of technology in our sample are: DOD-STD-SDS, the emerging

Department of Defense (DoD) software life cycle modell AFR 800-

14, the Air Force policy regarding the acquisition of embedded

software systemsi and the SCR methodology that underlies the
Navy's Software Cost Reduction program.

Consolidated technology, the fourth type of technology found

in our sample is also "second-level" technology. In this case,

the underlying technology is collected and made to work together

so as to provide something significantly better than any of the

individual pieces of technology alone. A simple example is software

cost estimation technology that brings together metrics, statistical

prediction techniques, and empirical techniques. The other example
within our sample is automated software development environments,
for which we have considered three specific systems: Unix*,
Smalltalk-80 and the Software Requirements Engineering Methodology

(SREM).

C. TECHNOLOGY MATURATION

The fourteen individual case studies provide considerable
detail about what happens during technology maturation. To provide -

some overall comparisons, these individual histories must be

placed on a common scale and we use the one displayed in Figure
*' IV-l. This figure defines six major phases for software technology

maturation by fixing the time points that indicate passage between
phases. Our interest in technology transition leads us to focus
"primarily on the period following the emergence of usable capabili-
ties (time point 2).

*Unix is a trademark of AT&T Bell Laboratories.

84

SOFTWARE TECHNOLOGY MATURATION PHASES

* ** *BASIC RkLSEARCH***

-- investigation of ideas and concepts that later prove funidamental
to the technology

-- general recognition that a problem exists and discuss'ion of its
scope and nature

o (<muin- Appearance of a Key Idea Underlying the Technology -==-=> 0
o 0 mnai~un or a Clear Articulation of the Problem --- =m-=> 0

* * * CONCEPT FORMULATION****

-- informal circulation of ideas
-- convergence on a compatible set of ideas
-- general publication of solutions to parts of the problem

1 <~:ztmmClear Definition of Solution Approach Via a =--===> 1
I <======~~-=Seminal Paper or a Demonstration Systan ==W==-===> 1

~~ DEVELOPMENT and EXTENSION
-- trial, preliminary use of the technology
-- clarification of the underlying ideas
-- extension of the general approach to a broader solution

2 <===----------=Usable Caipabilities Become Available-------2

* ** *ENHANCEMENT and EXPLORATION (Internal) ***

-- major extension of the general approach to alternative problem
domains

-- use of the technology to solve real problems
-- stabilization and porting of the technology

1k- development of training materials
-- derivations of results indicating value

3 <=-----Shift to Usage Outside of Development Group >3

* ** *ENHANCEMENT and EXPLORATION (External) ****

Same activities as for ENHANCEMENT and EXPLORATION (Internal) but t
they are carried out by a broader group including people who have
not been involved in the technology maturation up to this point.

4 <-=-=== Substantial Evidence of Value and Applicability--------=> 4

* ** *POPULARIZATION ****a

-- appearance of production-quality, supported versions
-- commercialization and marketing of the technology
-- propagatior~ of the technology throughout a receptive community of

users
a -- throughout 40% of the coimmunity
b -- throughout 70% of the commiunity

Figure IV-1

85

For all types of technology except consolidated technology, this
is the point at which overt, planned actions can start to have

* some definite impact on the maturation of technology. in the
* case of consolidated technology, the process of fitting indi-

vidual pieces of technology together may require some basic concept
formulation and development and extension, and these preliminary

activitJes may be amenable to acceleration.

The major time points for the individual technologies in

our sample are indicated in Figure IV-2 and used in the graphs
of technology maturation in Figure IV-3. Each time line in Figure
IV-3 ends at 1984 and the time lines are adjusted so that the
points for the appearance of a clear solution definition (time

point 1) are lined up. The time lines are organized first by

•_,_ -- _, -

type of technology and second by the length of the development

and extension phase. Since our interest is primarily in the
period after usable capabilities become available (time point

2)r the time lines are presented again in Figure I'V-4 for those
technologies that have achieved some degree of usage outside of
their developing group, adjusted to emphasize the phases following

the availability of usable capabilities (time point 2).

D. GENERAL OBSERVATIONS

Figures IV-3 and IV-4 indicate a wide variance in the time
that it takes for a technology to mature from the emergence of a
key idea to the point that it is used by professionals outside
of the developing group or by the technical community at large. .

Nonetheless, the figures do indicate some general character-
istics of the technology maturation process.

86

SOrIWAMrA TECHNOLOGY PAT TITON POINTS

0 1 2 3 4I I :~i
VI,

r Substantial Evidence of Value and Applicability
V Shift to Usage Outside of Development Group

; V Usable Capabilities Available
SV Definition Via Seminal Paper or Demonstration System
aEnergence of Key Idea

Knowledge-based Systems -

0) - 1965: appearance of artificial intelligence systems that provide 4
intelligent assistance (for example, Dendral)

"1 - 1973: appearance of systems containing a knowledge base (for
example, Hearsay)

2 - 1978-80: appearance of knowledge-based systems that can be
r routinely used for problem-solving tasks (for example, RI)

Software Engineering
0 - 1960: inadequacy of existing techniques for large-scale software

development noted in several projects (for example SAGE)
1 - 1968: concept of software engineering is articulated at Workshop

on Software Engineering at Garmisch Partenkirchen
2 - 1973-74: general collections of papers appear and policy guide-

lines are established in various communities
3 - 1978-79: texts and generally usable systems supporting software

engineering appear (for example, the SRE•M system)
4 - 1983: use of software engineering shifts to a larger community

through actions such as the DeLauer directive and the
definition of a Software Engineering Institute

Verification Technology
0 - 1966: Floyd's paper on program correctness analysis
1 - 1971: King's demonstration system appears
2 - 1975: multiple systems are available
3 -- 1979: usage of some systems shifts to application groups

Compiler Construction Technology
0 - 1961: Iron's paper on compiler generation
1 - 1967: review paper by Feldman and Cries

S2 - 1970: usable systems appear (such as the XPL system at Stanford)
3 (cannot be determined)
4 -- 1980: appearance of production-quality compiler-compiler

-Metrics
0 - 1972: publication of book on Halstead metrics
1 -- 1977: results of trying to measure various empirical and analytic

measures appear

Figure IV-2

87

SOFTWARE TECHNOLOGY MATURATION POINTS (Continued)

Abstract Data Types
0 - 1968: initial report on information hiding
1 -- 1973: appearance of some languages using idea of abstract data

types (for example, TOPD design language)
2 - 1977: major publication on the subject and frequent appearance

of the concept in new programming languages (for example,
CLU)

3 - 1980: use of abstract data types in other technologies (such as in
the Affirm program verification system)

Structured Programming
O - 1965: Dijkstra's paper on programing as a human activity
1 - 1969: paper on structured programming by Dijkstra at the First

Nato-sponsored Workshop on Software Engineering
2 - 1972-73: concept is widely discussed and presented in papers
3 (cannot be determined)
4 - 1976: publication of first introductory text based on structured

progra:-iming

SCR iMethodology
O -- 1968: appearance of concepts such as information hiding and

communicating sequential processes
1 - 1976: completion of feasibility demonstration by NRL with positive -

experiences
2 - 1978-79: appearance of training material and models of usage
3 -- 1982: methodology moved to a variety of other organizations

DOD-STD-SDS
0 - 1967: initial articulation of phased approaches to software

development
1 - 1980: contract signed for development of DOD-STD-SDS

AFR 800-14
O - 1972: basic need for policy and specific guidance is documented
1 - 1973: strawnan policy is published
2 - 1974: policy guidance is published .
3 - 1974: final draft is available
4 - 1975: regulation and instructions for its use are officially

published

Cost Models
0 - 1966: appearance of first collection of cost-related data
1 - 1976: appearance of first usable system (Price S)
2 - 1978: alternative systems are available (for example, COCOMO)
3 - 1981: publication of Boehm's text

Figure IV-2

88

SOFTWAR THCUNOLOGY IUMAT TION POINTS (Continu~d)

Smalltalk-80-
0 1965: Kay's thesis defines concept of a personal computerized

notebook
1 -- 1972: preliminary version of Smailtalk is available
2 -1976: major new version of zr~alltalk appears
3 -- 1981: other companies start porting the Smalltalk-80 system to

their computers
4 -- 1983: Smalitalk-8O available as a commiercial product

S REM
0 - 1968: ISDOS system demo~nstrates applicability of attribute-value-

relation approach to pre-implemnentation activities
1 - 1973-74: first concrete definition of the SREM system appears
2 - 1977: first release of the SREM4 system
3 -- 1981: Vax version available

Unix
0 - 1967: appearance of the Multics system
1 - 1971: initial versions of Unix available
2 - 1973: Unix system debuts at Sigops conference
3 - 1976: collection of papers appears and system is beginning to t

be ividely used in academic community
4 - 1981: announcement of Unix System III

IFigure IV-2

L ~89L

! !!i! !

SOFTWARE TECHNOLOGY MATURATION TIME LINES

Metrics

Knowledge-based Systems

'e*0**************2*

*

Software Engineering

tr...
* * 0

2
3 4

Verification Technology
.. * * QO* * * * l1* ** 2* ** 3 * * * * *

Copiler Construction Technology
* ** ****

Abstract Data Types
... ** 0* * ** ** *2**3** * *

Structured Programming
0**** ** l*** ** * * b*** **

SCR Methodology
*** **1******* **2****

DOD-STD-SDS
* ' ***** ** **** 1 2

AFR 80*0-14
.. **O124"****

3

-

Smalltalk-80 3********k***l*******
*3*4*

0 .1
2 3 4

SREM

Cost Models

j Unix Unix* *** ******* 3** ** ** *

0 1 2 3 4
Concept Development Enhancement Enhancement Popularization
Formulation & & & a - 40% usage

Extension Exploration Exploration b - 70% usage
(Internal) (External)

V
Substantial
kEvidence of Value

V and Applicability
Shift to Usage Outside of

V Development Group
V Usable Capabilities Available

V Definition Via Seminal Paper or Demonstration System
Emergence of Key Idea

Note: the last point on each time line is 1984

Figure IV-3

90

SOFTWARE TECHNOLOGY TRANSITION PERIOD

Software Engineering

Verification Technology

Compiler Construction Technology

Abstract Data Types
i~ll m ***0****l***2** 3**** ** * * *

m•... * *0 ****i***2 **3****
Structured Programming

SCR Methodology
* * 0* * * * * * * 1 * * 2 * * 3 * *

AFR 800-14
0 124 *** ** *** *

Smalltalk-80

0 ** * * 2* ** * 3* *
SREMIm * * 0** * 1" 2** 3 *

Cost Modelsli* ***********l*********

U ~~Unix .* ** * ** * * 4 *p
0 1 2 3 4

Concept Development Enhancement Enhancement Popularization
Formulation & & & a - 40% usage

Extension Exploration Exploration b - 70% usage
(Internal) (External)

V
Substantial

' Evidence of Value
V and Applicability
Shift to Usage Outside of

V Development Group
Usable Capabilities Available

V Definition Via Seminal Paper or Demonstration System
anergence of Key Idea

Note; the last point on each time line is 1984

Figure IV-4

91

.!! . .:'

* 1. Major Technology Areas

For this type of technology, maturation requires a very
long period of time. This is presumably caused by two things.
First, since the area is broad, many advancements in specific

*pieces of technology are needed before a general advancement can
take place in the area as a whole. Second, because the technologies 7
we investigated in this area are ones that do not move into widespread
use because of their specialized nature, full maturation must

await the "pulling* effect of a recognized need for the product
technology derived from the technology within the major area.

For several of the major technology areas investigated,
maturation was guided by an external force. Verification tech-

* nology was essentially languishing in the development and extension
phase until its value for life-critical and secure application
areas was recognized and special attention and focus was directed
toward application areas with these characteristics. Compiler
construction technology experienced a similar phenomenon when
the general focus on high-level languages in the late 1970's -

forced attention to capitalizing on the technology that had been
* developed so far and developing the capability to produce econom-
* ically production-quality optimizing compilers. Through the

government's Ada and STARS programs, the external focusing force-
is starting to appear for the area of software engineering.

2. Technoloqy Concepts

- ~The two examples considered in this area share the character--

istic that they are simple ideas with a fairly easily understood
conceptual basis. Thus they have matured fairly rapidlyl but
they themselves have not spread throughout the technical community

as fast as some of the technology based on them. For example,
structured design, which is based on the concept of structured
programming, is probably used by a larger segment of the technical

community than is structured programming itself. This is to be

92

expected--ideas can mature fairly quickly but it takes their
unambiguous definition as a specific technique, perhaps supported
by tools, to make them useable by the majority of the technical

community.

3. Methodology Technology

Methodology technology concerns the rules and guidelines

guiding use of other technology for the creation and evolution
of software systems. As such, several things have to happen

before this type of methodology can transition into widespread

use. First, the underlying technology has to mature. Second,
* the rules and guidelines have to be developed. Finally, demonst-

S--rations of value have to be prepared.

The concept formulation phase for methodology technology

can, therefore, be rather long as evidenced by the time line for

DOD-STD-SDS -- the technology supporting full life cycle development

methods just was not in place for this technology to mature faster.
SOnce the technology is in place, then maturation can occur fairly

fast as evidenced by the time line for APR 800-14. But the defini-
tion and standardization process does not necessarily go quickly

-- in the case of APR 800-14 there was a relatively small, homogen-
i eous community but in the case of DOD-STD-SDS the community is

much more diverse and the process of gaining approval is consider-

* ably slower. The value of good planning and the careful development

of convincing cost/benefit demonstrations is shown by the experience
in maturing the SCR methodology -- this project sets a standard

* for work in this area and indicates what can be expected in the
average case that the methodology technology is well-developed

and carefully transitioned into the professional community.

93

imam i

4. Consolidated Technology

The situation is similar for consolidated technology --many
things have to come together in order f or the technology to fully
mature. From the case studies it appears that the enhancement

and exploration phases take longer than for methodology technology,
presumably because of the need to build the "glue" that fits

various pieces of technology together. In factv the phasing

seems rather the same as for technology concepts but one must

realize that consolidated technology must, of necessity, l~ag the

maturation of the technology on which it is based.

U . ACCELERATION OF TECHNOLOGY MATURATION

We have too few case studies and the areas are too disparate

to be able to determine the nominal case for technology maturation.

In fact, one suspects that special considerations will make each

instance rather unique and that it will be hard, if not impossible,
to predict the maturation time line for a technology by investiga-

ting the time lines for other technologies even if they are quite

similar.

Our case studies do, however, indicate a number of factors
"that can inhibit or facilitate the maturation of technology.

These give us some insight into what we should and should not do
in order to assure that technology matures as smoothly as possible.
These factors are discussed in this section.

A word of caution: the various factors are discussed indi-
vidually but they will interact in very complex ways for any

given technology and we do not address these interactions here.

An interesting study that reflects the overall effect of all
factors impinging on the maturation of technology has been doneus

by Graham (16) who notes that there has been a 50-year cycle in
the popularization of technology and maxes some interesting

observations as to why this is so and how it will affect the
transition of software technology.

94

1. Critical Factors

U The case studies indicate a number of factors that are critically

necessary in the sense that trying to move a technology into
* widespread use is almost pointless unless these factors are present.

Our case studies show a few instances of failure when these factors
W. have not been present. In many cases, however, total failure

was avoided by realizing the problem and correcting the situation
-- therefore, many of our examples in this section really show
the slowing effect of a failure to establish the right context

for technology transition. P

Conceptual Integrity. The technology (or the base technology
in the case of methodology or consolidated technology) must be
well developed. In particular, there can be no major outstanding
questions about the conceptual basis underlying the technology -

- the resulting controversy will just slow things too much. The
area of metrics indicates how controversy can make any meaningful
progress impossible. On the other hand, the conceptual clarity

U of the Unix operating system (due in part to the preceding work
on Multics) made its maturation possible. As another positive

example, the clean separation of concerns within the area of
compiler construction technology has led to that area being one

I of the few major technology areas that has matured to
popularization.

Clear Recognition of Need. The technology must fill a
well-defined and well-recognized need. Often this need just
materializes, but in many cases the need must be articulated by
a well-respected salesperson. Time points 1 and 2 in our
maturation process reflect the critical role played by clear
enunciation of a need and a solution.

Tunability. It must be possible to mold and tune the technology
to the specific practices of a variety of technology user groups.
Both SREM and Unix provide examples of highly tunable technologies
that could be molded to a variety of "ways of doing business".

95

The transparency of the COCoI4O (Constructive Cost Model) cost

estimation model is another example of how a technology can be

open to modification and therefore more easily incorporated into

diverse situations.

Prior Positive Experience. Reports on prior positive experi-
enices with the technology ahould be readily available. Of partic-

ular importance are reports showing demonstrable cost/benefit.

This is evidently a major contributing factor in the successful

* ~transitioning of the SCR methodology. Th~e success of the Price-

H hardware cost estimation model was evidently a primary factor

in the Price-S software cost estimation model being almost imme-

diately accepted and used. on the other hand# the lack of demon-

strable success in applying SREZ4 to software development caused

its maturation to be considerably slowed. (The SRE?4 experiences

demonstrate a severe problem that will exist for much of the

technology surrounding early life cycle phases --clear demonstra-

tions of value must await the completion of a reasonable sized

project and this will delay the results.)

Management Commitment. Management must be committed to the

introduction of new technology. And this means that they must

actively work to introduce the technology rather than just rnot

oppose its introduction. The case study of the SCR methodology-

* cites at least one case in which the technology introduction

failed because of a lack of management commitment.

Training. Training in the use of the technology must be
provided and this training should include a large number of examples.-

This training is particularly critical when new, modern concepts

are involved since then the users must be put in the "right frame

of mind" before they can effectively use the technology. The

studies of SREM, the SCR methodology, and verification technology

all cite the criticality of high-quality training.

96

2. inhibitor.

The factors discussed in the last section are critical and

if they are not present then the situation must be corrected.
C. lEven when they are present, and therefore maturation can

proceed, the case studies show that a number of inhibiting

' ifactors can slow down the process (as opposed to bringing it to
a standstill).

* Internal Transfer. It may take additional time to

propagate a technology throughout an organization. Our own case
studies do not uncover the need for this additional time, but it
is demonstrated by a particularly complete and fairly
quantitative study of technology transition that was done by

- Willis (17). He notes two important factors that affect the

internal propagation of a technology but do not show up in our
case studies. First, he notes that the influence of new hires,

, who are knowledgeable in the new technology and less reluctant
to use it, can be important in facilitating the transition of
technology. Second, he notes the general requirement that there

be some person or group of persons who are personally committed
to successfully transitioning the technology -- this is
consistent with Boehm's suggestion that there be a technology
transition agent within companies to aid and guide the infusion
of new technology (18).

High Cost. The cost, either in money or in the time needed

to grasp the technology, must be reasonable. The cost
i! estimation technology study cites the high monetary cost of

Price-S as inhibiting its acceptance and the intellectual
difficulty of COCOMO as having a similar effect. The study of
SREM relates the SREM developers' belief that the cost of using A-
the initial version, although reasonable, was above a pre-

conceived threshold and that this delayed the acceptance of
SREM. And certainly, the difficulty of performing verification,
even with automated aids, has slowed its transition into general
use. (One would expect that a high cost would be all right as

97

long as the derived benefit was high, leading to a high benefit-

to-"paLn" ratio. Our cost studies do not support thist rather
they indicate that the cost must be reasonably low whatever the
benefit gained.)

Contracting Disincentives. Acquisition and contracting
practices can serve to slow the spread of technology. The case

study of SREM points out that private industry may be reluctant
to support the development of new technology when the result

will be in the public domain and the developing organization
will not gain a competitive edge as a result of their efforts.

And the SCR case study mentions the possibility that modern

technology for developing maintainable systems will not be used

when the possible result will be the unavailability of lucrative

follow-on work.

Psychological Hurdles. Many practitioners feel threatened

by new technology, especially when it is advertised as changing

(or worse, automating) processes that they have been competently
doing for years. And the computer science community seems

particularly afflicted by the "Not Invented Here" disease that

makes practitioners think that they have developed or can
develop something much better than what is being offered for

use.

Easily Modified Technology. If something can be changed or

fiddled with, then it is almost axiomatic that a computer
scientist will change it or fiddle with it. Therefore, if a
technology is easily modified (as opposed to just tuned), its
introduction will be slowed because it will be modified. This

was cited as a debilitating factor in at least one case of
introducing the SCR methodology.

3. Facilitators

Technology will spread more quickly when the inhibiting

factors mentioned in the previous section are absent. But, our
case studies indicate that there are also a number of factors

that can tend to speed the dissamination of technology.

98

Prior Success. A "good track record" for the technology's

originator(s) will not only make it easier to "sell" but may
lead to practitioners seeking out a technoloqy when they read or
otherwise hear about a recognized expert's new developments.

incentives. Software acquisition contracts can specify.
n that new technology must be used -- for example, the Ballistic

Missile Defense Advanced Technology Center is currently requiring

the use of SREM on some of its contracts. In some cases, the
incentive can be indirect -- contract bidders were evidently
quite interested in using particular cost estimation models when

it was learned that the government was using these models in
their proposal evaluation.

Technically Astute Managers. In two case studies, it was
noted that adoption of a new techaology went more quickly when
the decision-makers were well versed in modern software
technology.

Readily Available Help. Knowledgeable, articulate advisors
and consultants will help in explaining a complex technology, in

getting over the almost inevitable misunderstandings that will
arise and in dispelling any initial hostility. They can also

| mserve indirectly as salespersons who can make needs visible,
explain the benefits of the new technology, and relate the tech-
nology to the needs of potential users.

"Latent Demand. If there happens to be a well-recognized

critical need for the technology, then its adoption can be almost P

immediate -- this was experienced in the case of cost estimation
models where the need was a longstanding one and the early models

were almost immediately used.

-- Simplicity. While the technology and its underlying basis
can be quite complex, adoption will move more certainly and smoothly
if the instances of it that are available for use are easy to

comprehend and are only minimally disruptive to the state of

99

!; ;,9

practice. The slowness in maturing verification and knowledge-
based system technology is partially due to the absence of simple,

"easily comprehended systems that deliver this technology. On
"the other hand, the relative simplicity and conceptual clarity

of the Unix operating system contributed to its rather quick

adoption by the academic and research community.

Incremental Extensions to Current Technology. This factor
is closely related to simplicity. Technology that requires large

" "cognitive switches, such as the SREM and verification

technology, will transition relatively slowly whereas technology

that is an incremental enhancement of previous technology, such

as the Unix system, will be adopted rather quickly.
SIII-

F. CONCL1US1IONS

The case studies show that it takes on the order of 15 to
20 years to mature a technology to the point that it can be popular-
ized and disseminated to the technical community at large. (And
other studies (16) show that it may take another four to eight -

years for the technology to transition within various organizations.)

.m In special cases, this time can be considerably shorter. One
such case is technological concepts and ideas that do not need
computerized support or a change in the using community's mind
set. Another special case is methodology technology that can
transition very quickly when the need is clear and the target
community is a close knit and homogeneous one.

The case studies show a very mixed situation with respect -

to government coordination as a means of facilitating technology
transition. APR 800-14 was established very quickly, mainly
because of the homogeneity of the target community. DOD-STD-

SDS, on the other hand has gone through at least one major revision
because of the difficulty of arriving at a consensus among the
technical community -- this has considerably slowed its maturation.

Even in the case that there is a clear need and a strong desire

100

',.'~ - ~- * -- r-.--r-~-r,-'----rr--r77-77-- T7---'--' 7- -- -'--7

to agree on a piece of technology that can be used throughout
5 the government, the decision-making process can slow the maturation S

considerably -- the need for a common high-level language within

the DoD was articulated as early as 1971 (18) but the initial
definition of Ada was not chosen until eight years later and it
took another four years to finalize the language definition support.

No technology will transition into widespread use unless
there is a recognized need, a receptive target community and
believable demonstrations of cost/benefit. In addition, bringing
a technology into widespread use requires a well-defined chan- .471

neling of attention accompanied by concentrated support. It
also needs an articulate advocate who will argue both for the
need to support development and the value of the technology once
it is developed.

The best process for transitioning technology seems to be
incremental expansion in small steps with trial use and the careful

gathering of empirical evidence concerning the technology's value.
The transitioning of Unix is the epitome of this approach. Unix
was initially an incremental improvement over Multics and the
Unix system appeared as a series of systems, each being an incre-
mental improvement over the previous instance. Government con-
straints upon AT&T contributed to the failure to commercialize
Unix and this slowed what might have been a relatively quick
transition. The carefully managed exploration of Smalltalk-80 by
professionals outside the development group is a good example of
how the initial part of technology transition can be done in

controlled, small steps.

Compiler construction technology provides a slightly different
example of this process. Early in the development of compilers
there was a clean separation of the problems into a number of
inter-related concerns: parsing, optimization, code generation,

etc. This separation made it possible to make improvements that
were relatively small with respect to the area as a whole and

101

L

that could be relatively easily delivered to the compiler develop-

ment community.

For all of the cases we looked at, technology transition
was inhibited not by making major conceptual or strategic blunders,
but rather by making small, relatively simple mistakes that were

easy to correct once they were identified. SREM provides a 7-

good example. With 20-20 hindsight, it was obviously a mistake

to implement SEEM initially on a super-computer. The decision

was a reasonable one because of the risk associated with pe:e-
implementation support and the availability of the TI ASC computer

to support the project. But the restrictions that this imposed

on the target user community and the difficulty in porting that

resulted caused a significant slowing in the transitioning of

I -I

this technology. once the problem was appreciated and the resources

obtained to fix the situation, SEEM was ported to a much more

widely available host in less than a year and its transition to

wider use put back on track.

our case studies also show that, in general, technology
transition is facilitated by actions that improve the context in
which the transition is taking place rather than address the

technology itself. Of course, research and development is needed

to assure that the technology is sound and complete. But this

work does not seem to be easily accelerated. Rather, it seems

that acceleration will come more from iap-proving the context through

actions such as providing a focusing goal, improving the technical

capabilities of the target community, assuring that training-
materials and personnel are available, and assuring that the

technology "packages" that are provided for use are conceptually

coherent and relatively simple improvements over the technologyA o

already in use.

our study shows that a number of factors can affect the
speed at which technology matures and is transitioned into wide-
spread use. Even without the inhibiting effect of not providing

102

the basic xtor making mistakes, the technology will take a

U long time ,ature. The degree to which the maturation can be
speeded seems limited but there are several actions, relating to

the context in which the technology is maturing, that can be

taken to accelerate technology maturation.

103

i al l

-ll l 0 pee eeslmtd u hr aesvrl cin-reaigt

iiiiiii0

•-- ' te cotex inwhic th tehnolgy s maurig, hat an e 0
"|11 I Ill103

]iiii • ae oaclrt tcnlg auain

RalFRNCRES

(1) John Bailey. Cost Model Technology Transition. May 1984.

(2) Paul C. Clements, et al. Case Studies of Software
Engineering Technology Transfer. Tech. Memorandum, Naval
Research Laboratory, April 1984.

(3) Richard A. DeMillo. Compiler Technology Insertion Network
Study. May 1984.

(4) John H. Manley. Technology Case Study: Software
Engineering Conceopts. Tech. Memo, Computing Technology
Transition, Inc., Madison, Connecticut, May 1984.

(5) John H. Manley. Technology Case Study: Software Metrics.
Tech. Memo, Computing Technology Transition, Inc., Madison,
Connecticut, April 1984.

(6) John H. Manley. APR8 1 s Tech. Memo, Computing TeColog
Technology Transition, Inc., Madison# Connecticut, May 1984.

(7) Ann Marmor-Squires. Formal Software Verification as an
Examhle of Software Technology Transfer. TRW Defense
Systems Group, Fairfax, VA, May 1984.

(8) Ronnie J.. Martin. DOD-STD-SDS: The Develo2ment of a
Standard. May 1984.

(9) Samuel T. Redwine, Jr. Structured Programming: A
Technology Insertion Case Study. Computer and Software
Engineering Division, Institute for Defense Analyses, May
1984.

(10) William E. Riddle. "The Magic Number Eighteen Plus or
Minus Three: A Study of Software Technology Maturation."
ACM SIGSOFT Software Engineering Notes, 9, 2 (April 1984).
(Includes case studies of Unix, Smalltalk-80p and SREM.)

(11) William E. Riddle. Knowledge-based Systems as a Case
Study in Software Technology Maturation. SDAM/15, sonftware
design & analysis, inc., April 1984.

" (12) William E. Riddle. Abstract Data Types as a Case Study in
Software Technology Maturation. SDAM/16p software design
&analysis, inc. April 1984.

(13) David Weiss. Time Line for DeveloNment and Transfer of SCR
Methodology. February 1984.

(14) R.F. Rich (editor), The Knowledge Cycle, Sage Publications,
1981.

104

(15) William D. Garvey. Couuuunication: The Essence of Science,
Pergamon Press, 1979.

(16) Alan K. Graham. "Software Design: Breaking the Bottleneck."
IEEE Spectrum, March 1982, pp. 44-50.

(17) R. R. Willis. "Technology Transfer Takes 6 Plus/Minus 2
Years." Proc. IEEE Workshop on Software En ineering
Technology Transfer, April 1983, Miami, Florida.

(18) Barry W. Boehm. "Keeping a Lid on Software Costs."
(19).Computerworld, January 18, 1982.

119) Paul Cohen. Early Software Technology Efforts Within
DCA. March 1984.

105

CHAPTER V STATE OF THE ART

A. INTRODUCTION

The state of the art in software technology has been

addressed by a series of studies in recent years (1)-(5). In

addition to these broad ranging studies, a number of surveys in

more narrowly defined fields have appeared, for example, in

artificial intelligence (6)-(7). Rather than provide another
survey, the intent of this chapter is to give concrete examples

of the state of the art in software technology that help provide

insight into the potential for software technology improvement

and address potential benefits. A detailed plan for a software

i technology improvement program requires a detailed assessment of
the state of the art (e.g., 5). But, the assessment provided

""~ here is intended to support high-level, strategic planning and

I Ii •provide concrete examples. Rather than provide an exhaustive -

, accounting, it therefore focuses on a representative sampling

of current technology.

Our primary interest is in technology that supports the

-- development and maintenance of software systems. We have chosen

eleven technology topic areas that span the variety of
techniques and tools providing a' workspace for software
development and maintenance. In the general area of techniques,

.. we have chosen the following topic areas:

-- "development methods: sets of rules and guidelines
that serve to discipline the process of software
system development,

-- "testing technology: techniques for assessing a
system's validity that require system execution,

---- static analysis techniques: techniques for validity
assessment that rely on formal analysis rather than
execution,

.- • -

107

I !l ! s
Is GL

|%

-- verification techniques: techniques for assessing
whether the system will meet its specification (as
opposed to the users' expectations).

"These topic areas emphasize the critically important
* activity of analyzing the suitability of a system under
- development or enhancement. In the general area of tools, the

topic areas are:

Sprogram transformers: tools that transform a
program's text into an executable version,

* - pre-implementation modelling notations: languages
for rigorous but abstract description of a system
during the definition of its requirements or the
development of its design,

-- measurement technology: metrics and experimental
paradigms supporting the assessment of system quality
compiler generation technology: tools that
automatically generate part or all of another tool,
in this case a compiler,
software engineering environments: collections of
tools that support all or part of the software life
cycle,
editors: the tools provided for entering and
manipulating text,

-- command languages: languages for controlling the
invocation of tools within a software engineering
"environment.

In this set of topics we have tried to treat not only the
tools themselves but also tools that aid the development of
tools as well as several aspects of tool collections.

Our interest is in technology that has passed from the
research arena and been matured into a usable "product" but for
some reason is not widely used* within the practitioner
community.

*We are not interested here in analyzing why the usage is not
wide-spread. Some observations are made in this regard, but
only as needed to argue that our categorization of various tools
and techniques is appropriate.

108

For each of the topic areas, Figure V-i indicates four

techniques or tools that help understand what lies within this

area of interest. We bound the area of interest for each topic

r area by indicating 1) a tool or technique that has made it into
*the repertoire of the general practitioner and 2) a tool or
- ~technique that is currently still in the research phase. Within0

* these bounds, we cite two state-of-the-art tools or techniques.
First, we indicate a tool or technique that is on the verge

of emerging into more wide-spread usage. Second, we indicate a

tool or technique that, although well-researched and well-
developed, has only a very small user community. Thus, for

each technology topic area, we provide examples at each of
the following levels of transfer into wide-spread usage:

U--- mature: there are several different implementations
available and these are used by a broad segment of

* the practitioner community,

-- emerging: the tool or technique is generally
available but not widely used, perhaps because of a
lack of a variety of implementations or maybe because
of a lack of "enthusiasm" within the practitioner
*community even though a variety of implementations are
available,

-- understood: the tool or technique is well-researched
but the available implementations (if, in fact, there
is more than one) are used by only a small segment of
the community, primarily only the tool's or
technique's developer(s),

-- research: the concepts underlying the tool or
*technique are still being researched.

109

Summary of State of The Art of Software Technologies

EMERGING UNDERSTOOD RESEARCH

STATE OF THE MATURE GENERALLY WELL- UNDERLYINGRESEARCHEDART WIDELY-USED AVAILABLE BUT BUT NOT CONCEPTS
NOT WIDELY WIDELY UNDERGOING

USED AVAILABLE RESEARCH

METHODS FUNCTIONAL DATA FULL LIFE CYCLE NON-WORK-
DECOMPOSITION DECOMPOSITION METHODS PRODUCT

METHODS

TESTING AD HOCTESTING COVERAGE FUNCTIONAL TESTCASE
TECHNOLOGY TECHNIQUES TESTING SELECTION

TECHNOLOGY

STATIC ANALYSIS SYNTAX TYPE CHECKING DATA FLOW USER-STATED
TECHNIQUES CHECKING ANALYSIS CHARACTERISTICS

VERIFICATION WALK RIGOROUS VERIFICATION TRANSFORMA-
TECHNIQUES THROUGHS "DESK- SYSTEM TIONAL

CHECKINGN DEVELOPMENT

PROGRAM COMPILERS PROGRAM CONVERSION PROGRAM
TRANSFORMERS BEAUTIFIERS AIDS GENERATORS

PRE-IMPLEMEN- PROGRAM ABSTRACT DATA DESIGN RE-USABLE
TATION DESIGN TYPES MODELING SOFTWARE PARTS
MODELING LANGUAGES NOTATIONS
NOTATIONS

MEASUREMENT SIZE METRICS DATA PROGRAM EXPERIMENTAL
TECHNOLOGY COLLECTION METRICS TECHNIQUES

COMPILER PARSER LEXICAL PRODUCTION RETARGETABLE
GENERATION GENERATORS ANALYZER QUALITY COMPILERS
TECHNOLOGY GENERATORS COMPILERS

SOFTWARE PROGRAMMING REQUIREMENTS LIFE CYCLE KNOWLEDGE-
ENGINEERING SUPPORT DEFINITION SUPPORT BASED
ENVIRONMENTS SYSTEMS SYSTEMS ENVIRONMENTS ENVIRONMENTS

EDITORS FULL-SCREEN INTERACTIVE SYNT AX- GRAPHICS-BASED
EDITORS EDITORS DIRECTED EDITORS

EDITORS

COMMAND JOB CONTROL PROGRAMMABLE GENERIC TOOL
LANGUAGES LANGUAGES COMMAND COMMAND AGGREGATION

LANGUAGES LANGUAGES

Figure V-I

110

W '7 T% ~ W

U S

"8. DISCUSSION

1. Methodp!
The development and maintenance of software systems,

particularly large-scale or complex ones, requires discipline.
- Methods provide the rules and guidelines that impose this

i 1discipline both on individual practitioners and upon teams

*IIII "' working together on a single system. . .

Functional decomposition met~hods focus attention on--- the
*.== capabilities to be delivered by the software sy-m nd guide "O

the. hierarchical decomposition of this funfctionality into
gradually more primitive functions. Structured programming
(8) is an early instance of such a method which relies on the
use of a small number of understandable control constructs

to detail the way in which sub-function invocation is

controlled. More recent methods of this sort, for example
structured design (9), focus less on the invocation control
mechanisms and more on the logical decomposition of

S functionality and the definition of information flow among

functional components.

"Data decomposition methods switch attention from the

processing to be done to the data that is the subject of
prrcessing*. The basic rationale is that in many situations,

•- the decomposition of the data is more easily accomplished and
- -that the processing to be done can be inferred from a data

decomposition once it is defined. The most extensively _
_ .developed method of this type is owed to Jackson (10).

*Data flow techniques help in the decomposition of

functionality and therefore are considered to be in the class
I of functional decomposition method.

iiii :,

,m1m1

L_•. • , .

N

Object-oriented design (11), which is founded on the
concepts of abstract data types (12), is another method
of this sort that is receiving increasing attention.

Current data decomposition methods generally focus on one

phase of the software development process, usually the
......- r----, tLies.l--d-e-v-e-loped ar-e methiods that• span a

variety of phases. The Jackson method has been extended to

cover the design phase as well as the programming phase (13).
The development of the Distributed Computing Design System - •

(DCDS) (14) has resulted in an understanding of the methods
supporting system requirements definition, software require-
ments definition, software architectural design, and software
detailed design. This project has also resulted in an
understanding of the methodological guidelines for moving
among these phases. While methods such as these are not yet
full life cycle methods, their existence does indicate that
organizing and disciplining the full life cycle process is
beginning to be well-understood.

Less well understood are non-work product methods such as
prototyping (15). A concern for management control of the
software development and maintenance process has driven the
majority of methodology work. Current methods are therefore -

focused on, or at least have been aligned with, a collection
of work products that provide management visibility and
control. Prototyping, on the other hand, is a technique that
focuses attention on the validation issue of whether or not a
suitable system will result. Alternative types of methods

and their compatibility with existing work product-oriented
methods are currently a focus of active investigation.

112

2. Testing Technology

Validation of a system by making trial runa and checking
the output, i.e., testing, is a long-standing practice. The

generally used technique can be called ad hoc testing (16)

because information concerning the system's overall function

* is used in a relatively ad hoc manner to determine test cases.

Currently emerging into more wide-spread use are coverage

techniques (17) that additionally use information about a
program's physical structure in guiding the selection of a set

of test cases. For the most part, these techniques focus on
*; assuring that a large proportion of the paths through a

program's logic are exercised, or at least measuring the
percentage of paths so that the user can understand the extent
to which a program has been exercised. Several coverage test-
ing tools are commercially available (18), (19), but the use of
coverage testing techniques is not wide-spread.

Functional testing has been proposed (20) as a way of

using information about not only the system's overall intended
"function but also the "internal" functions that are defined
during design. The technique itself and its limitations

are well-understood but more investigation is needed before it

can be used by even a small segment of the practitioner
community at large. In particular, it appears that a family of

- such techniques, each pertaining to a specific application area,
will have to be developed (21).

, :The selection of test cases is currently done in a

structured but essentially ad hoc manner. Some of the current
testing research (as reported, for example, in (22) and (23)) is

oriented toward developing a formal test case selection
technology that provides a rigorous foundation for test case
selection. A side effect of this research will be a firmer

113

L. •

- -

understanding of the characteristics of different testing

approaches and an ability to compare, contrast and select
testing strategies.

3. Static Analysis Techniques

An alternative to assessment by execution, such as in

testing, is to analyze the text of a program for errors. This
so-called "static" approach to assessment may involve some
interpretation (conceptual execution) of the program and is
therefore often similar to dynamic approaches such as testing. -

The distinguishing characteristic is the scope of the
technique -- static analysis techniques check for all errors of
a certain type whereas dynamic techniques, except in very
restricted error domains, uncover only some of the errors of a
certain type.

Every practitioner uses a high-level language (for at least
part of the time) and thus uses a syntax checking static
analyzer since this function is always performed by the high- -

level language's compiler.

Less common is the use of a static analyzer that performs
type checking. Many modern high-level languages, such as
Pascal and Ada, have strong typing rules that require the
declaration of a type for every data object and conformance
to strict type-related rules about the use of data objects.
While there is some controversy about the value of such rules
in developing some types of software (for example, system's
software), the general feeling seems to be positive. The use of
this type of static analyzer will increase as the use of
languages with strong typing rules increases.

Static analyzers of the sort discussed basically check for
organizational or structural errors. They can check for
behavior-related errors only to the extent that these errors can

114

be defined in organizational or structural terms. Data flow

analyzers, on the other hand, directly check for behavioral 0
errors that concern the usage of data values. For example,
a typical check made by a data flow analyzer would be for the
use of an undefined variable. Data flow analysis techniques

for sequential programs are well-understood (24) but more O
engineering, such as being done in the Toolpack project (25),

needs to be done before this class of static analyzers are both

effective and efficient. Some work ((26), (27)) has been done
* "on data flow analysis techniques for concurrent programs but

more research is needed on making these techniques

computationally attractive.

Static analysis techniques generally check for pre-
L defined errors, that is, errors that stem from the definition

of the programming language (such as type-related errors) or
from knowledge of "good practice" (such as a division-by-zero
error) . A current research issue is whether data flow analyzers
can be more generic and accept definitions of the errors to be
checked for. The result would be data flow analyzers that check
for user stated characteristics where the user in this case is
the builler of a software engineering environment who wants to
include a data flow analyzer that checks for a certain type Jt-

of error.

4. Verification Techniques

The static and dynamic analysis techniques discussed in the 0 .
last two sub-sections are oriented towards software

validation, that is, the assessment of whether or not the system
"will meet user desires. Verification techniques address a

different issue, namely whether the system being constructed A--

- will meet the user's requirements as stated in a requirements
-.specification. The concern in verification is less with whether

,*l i •- 115" -

.2'.L

the eventual system will prove acceptable under actual use and
more with whether it is correct with respect to its stated
requirements.

Walk-throughs (28) are typically used to verify a system's
design or implementation. These consist of well-organized
peer reviews during the development process. They are founded
on the phenomenon that errors are best discovered by someone
other than the person who developed the design or code. They
have the side effect of causing the intra-team interactions
critical to discovering interface errors.

Rigorous "desk-checking' takes the level of analysis one

step farther. Whereas the analysis in a walk-through is
primarily informal, the attempt in rigorous desk-checking is to
analyze more formally the behavior of a program or software
system. Sometimes this is done with just careful case analysis
or hand tracing of representative cases. Some techniques
have been developed to provide even more formality. For

example, symbolic execution (29) can be used to perform ..
rigorous desk checking. In symbolic execution, algebraic values
are used to represent input values, rather than using specific
numerical values as in testing. A primary value of symbolic
execution is that it can be used to obtain information about the
function that will actually be computed under certain
domains of input values so that this can be (manually) checked
against a perception of the function that is to be computed.
A variety of implementations of symbolic execution analyzers are
available, but usage is rather small.

In formal verification, a rigorous mathematical analysis is
used to, (1) determine the function that a program will
actually compute and, (2) compare that function with the
function that the program is intended to compute. Formal

116

verification technology is fairly well-developed for sequential

i .programs and has resulted in several verification systems
such as Affirm (30) and HDM (31). Both their restriction to
"sequential programs and the need for an extensive amount of

training and education in the theory underlying formal

verification hinder their wide-spread use.

The ultimate in verification is to prepare the designs

and programs automatically by transforming one description into
a more detailed description closer to the eventual

implementation. For example, a technique has been developed

for automatically choosing implementing data structures in
several cases (32). The technical problem that arises in such

transformational development techniques is that one must verify
I that the transformation itself is correct, that is, that its

output will always be a correct elaboration of its input.

S5. ransforers

With the introduction of high-level languages came the

associated need to transform automatically a high-level
language program into executable text. Compilers were developed

as a tool to perform this transformation and they are widely
used throughout the practitioner community.

The advent of a concern for well-structured programs
brought with it, the need for transforming existing, poorly
structured programs into well-structured programs or for
transforming programs of any sort into ones that exhibited a
standard structure. Program beautifiers, such as the struct
tool (33) in Unix*, have been developed to meet this need but
are not as yet widely used. L .

* Unix is a trademark of AT&T Bell Laboratories.

117

:•i - 1.

Conversion aids, such as reported in (34) and (35), are

another type of program transformer. These convert programs in

one high-level language into an equivalent program in another
high-level language. Several conversion aids have been

developed but their wide-spread use requires more knowledge
about how to handle machine dependencies as well as
techniques for assuring that the result is a well-formed and

efficient program in the target language.

Program generators such as discussed in (36), are fairly
well developed in specific, generally very narrow,
application areas. Tools of this sort accept a definition of
the processing required of a software system and automatically
generate the system. Successful automatic generation requires a -

rather exact knowledge of the algorithms to be used in
accomplishing the required processing. This knowledge is, atll •the moment, known only for relatively narrow application

* " domains. More extensive usage requires some very basic r

research on how to generalize the experiences to date to --

provide a capability over a rea3onable spectrum of
applications.

6. Pre-itplementation Modelling Notations

A program in a high-level language is a description of a
software system that can be automatically transformed into an
executable version. In a very real sense, it is a model of the

executable version since it omits some of the excruciating
detail that appears in the executable version -- for example, the
details of array address computation are omitted in high-level
scientific programs written in Fortran. Pre-implementation
modelling notations provide for additional levels of
abstraction useful in describing software systems during the
pre-implementation phases of design and requirements

118

definition. Their main value is in allowing a rigorous
description of (some aspects of) a software system before all of ,

the detail has been determined.

Program Design Languages, such as initially described in

(37) allow the abstract description of a program with a focus
on the control logic and a de-emphasis of the data manipulation !

performed by the program. Use of this sort of design modelling
notation is relatively wide-spread throughout the practitioner

community.

Abstract data types (12) are another design-oriented

modelling technique that allow the description of a
module's functionality without the need to describe how the
module achieves the -described functionality. Most languages a.-

r_ that provide abstract data type capabilities are in the research

community, with the notable exception of Ada. The more wide-
spread use of Ada and languages of its type will carry with it
the more wide-spread use of the concept of abstract data types. -.

ll/ !In this regard, it is interesting to note the recently I
expanding use of Ada as a design, instead of a programming,
language.

Several design modelling notations (such as found in the "
TOPD (38), Gypsy (39) HDM (31), and SARA (40) software
engineering environments) have been developed to provide a means
of describing a software system's modules, their functions,
and their interactions. These notations allow the description

.- of a software system's architectural design in which the
system's overall structure is highlighted in a way t.hat aids in
subsequently working out the processing details of the
individual modules in the structure.

Capturing the information needed for selecting existing
modules for reuse in a new software system requires a

L-----
119

• ; == : -119

different type of abstract description. In this case, the

description must communicate use-related rather than
implementation-related information -- for example, information

concerning the performance of the module is much more pertinent
in this case. The problems of providing libraries of reusable
software parts, discussed in (41), are research-level problems
at this point. (Current-day libraries of mathematical routines
provide a good starting point for research into more general

solutions.)

7. Measurement Technolocy

Measures of the process of software development and
maintenance as well as the products produced by this
process are critical to evaluating the efficacy of alternative

approaches or techniques. The only measures that are widely
used are size metrics, with the most extensive use of these

*. measures being for cost estimation (42). Other metrics are not
widely used because of a suspicion that they do not highly

correlate with the real item of interest such as programmer -- -

productivity or program complexity.

A currently emerging technology in this topic area is the

technology of data collection. While there is far from
universal agreement on what data should be collected, there is

* the wide-spread realization that data must be collected in
* order to advance the general state of affairs as regards

measurement technology. This realization has led to, among
other things, the establishment of the Data Analysis Center for .

. Software at Rome Air Defense Center that has the charter to

provide a repository for software product - and process-related
* data and a mechanism for the dissemination of this data. The

current state of affairs seems to be that the level of

120

consciousness about the need for data collection is high enough

ft that long-standing techniques, such as instrumentation, are
being more widely used.

More complex program metrics have been developed in an

attempt to provide a means of measuring a program's abstract

characteristics (such as complexity) by measuring the program's

concrete characteristics (such as the connectivity of a graph

representing the program's control logic). While the theory

underlying the metrics themselves is generally well-understood,

the general lack of understanding of whether these metrics

really measure the abstract characteristics of interest has

inhibited their more wide-spread use. The metrics developed

* by Halstead (43) are a case in point -- they pretend to

* r measure a program's understandability (and therefore several

other "ilities" such as maintainability) by measuring

characteristics such as the number of unique objects and

operators, but there is far less than general acclaim that they-

do (44).

Even farther within the research arena in the area of

measurement technology is the subject of experimental

techniques. An experiment to evaluate comparatively alternative

architectural design techniques with respect to their support
for a system's maintainability has been proposed (45). Much

* more research needs to be done before software and the

processes for developing and maintaining software can be

experimentally evaluated in a truly scientific manner (46).

8. Comp2iler Generation Technoloqv

A compiler generator is a piece of software that accepts a

definition of the language to be compiled and the machine that

is the target of the compilation and automatically produces the

121

I--

compiler. Such software is an example of tool-building tools
that are not of direct utility to software development and
maintenance practitioners but are rather of use in preparing

* the tools that these practitioners may use.

Techniques for automatically generating the parser segment
of a compiler were well-known in the late 1960's (47). Very few
compilers are built today without the use of a parser generator
to automatically generate the compiler's parser.

Lexical analyzer generators are also available to
automatically produce the segment of a compiler that splits
the input stream into lexicographic tokens (i.e., words) for

*subsequent processing by the parser. Their use seems to be a
bit less wide-spread, perhaps because the task of lexical
analysis is both simple enough to be manually programmed and

* complex enough for many modern programming languages (because
*of dependencies on contextual information such as appears in
* ~variable definitions) that it is impossible to fully_

automatically generate a lexical analyzer. Lexical analyzer
generators, such as Unix's lex (48), are generally available
and are receiving more wide-spread use in the development of all
sorts of tools since the task of lexical analysis recurs in many
contexts.-

A few production-quality compiler compilers, that attempt
to provide support for all aspects of compiler development,
have been developed. At least one, the PQCC system (49)
developed by Wulf, has been the basis for launching a
commercial enterprise. But, so far1 the use of this extensive,
coherent technology is rather limited across the community of
compiler builders.

The "back-end" of a compiler, that part that produces the
* actual target system code, has only recently been addressed

122

within the research arena (50) with attempts to provide

retargetable compilers (as opposed to portable compilers).
While there has been extensive success, more research is needed

.. ibefore this technology can be actively used by even a

small segment of the compiler building community.

9. Software Engineering Environments

Collections of tools are more supportive of software
"development and maintenance than are individual tools. This

is especially true when the collection suppoeits a specific
method or covers much or all of the software life cycle.
Operatinq systems are a simple example of collections of tools,
but these provide only minimal support for just the preparation

r of a software system's code. In the last decade, interest

-_.has become strong in going beyond operating systems to pro-
vide software engineering environments that support teams of

-* practitioners over a fairly broad spectrum of the software life
__cycle.

* A broad segment of the practitioner population uses
I programming support systems. For the most part, these are

modern operating systems that support the preparation of an
i- implementation in a high-level language, the debugging of the
implementation and the maintenance of the large collection of

modules that typically exist for a large-scale software system.
More advanced programming support systems have been developed

(for example, Unix (51), Interlisp (52), and Smalltalk (53),
but these generally have only a small, albeit it very strong,
user community.

-- Several requirements definition systems have been developed

to provide automated support for the recording and analysis of
software system requirements. Most notable are PSL/PSA (54)

123

-- 77 -r r .

and SREM (55), each of which has a relatively extensive user
population. These systems are starting to be used by choice
rather than duress and it would seem that their further
commercialisation will lead to relatively wide-spread use.

The emerging understanding of how to cover the entire
softwaro life cycle with a set of compatible, integrated tools

has led to the development of life cycle support systems. The
previously mentioned DCDS system (14) is one such system. Other
examples are the USE system (56) that supports the development
of interactive information systems and the Joseph system (57)

that aupports pre-implementation activities during the ,
develcpment of multiple-processor systems software. All of

these systems are, however, research-level systems that need
considerable enhancement and the development of production-- •- -

quality versions before they can be extensively used.

A focus of extensive research interest in the software

engineering environments area today is the use of
artificial intelligence techniques to provide knowledge-based
environments ((58), (59)). Such environments would possess
knowledge of various software development techniques and the
conditions under which they should be applied. This

knowledge would be automatically used to more or less automati- -

cally derive an executable version of a software system from

the specification of the system's requirements. With such
systems, development practitioners would no longer use the
assistance of automated tools to develop software but rather

would become general strategists who are "consulted" when
experience, insight and intuition are needed during software
development.

124

-. ----.--

10. Uditors -

The vast majority of software practitioners access a
software engineering environment interactively through

terminals. Much of the use of these terminals is to prepare and
manipulate the text of the software system under development

V through the use of editors. It is very common to have full

screen editors, such as Unix's vi (60), which allow the user to

work on a multiple-line "page" of text rather than on a single
line.

Interactive editors (61) are emerging into the practitioner
community. These are based on "smart" terminals that use an

on-board computer which provides high-resolution bit-mapped

displays and some sort of fast location selection device

such as a "mouse". A variety of options are becoming available,

all within a cost range that is reasonable for most software
department budgets.

Fairly well understood at this time are more sophisticated

editing capabilities that use knowledge of a programming
language's syntax to aid in the editing process. These syntax-

"directed editcrs (62) do not require sophisticated terminal

* capabilities but rather they raise the level of man-machine
synergism by using knowledge of the language's syntax to

guide the editing of a program and assure that only

syntactically correct programs result from any editing
operation. .

Still in the research phase are graphics-based editors.

While the hardware aspects of graphics tirminals are well
t., i known and a wide variety of such terminals are available, how to

effectively use the graphics capabilities in support of

125

t.7

software development is not fully understood. The TELL system

(63) was an early attempt at using graphics in support of
software design but the use of graphics in this system was
essentially in support of the display of control and data
flow charts. These sorts of terminals offer great potential for

providing significant support of software development but
considerable research is needed.

11. Command Languages

g Command language allows the practitioner to identify a tool

and activate it against specified data. For the most part,
practitioners currently use a traditional operating system job
control language for this purpose.

Some systems provide programmable command languages that
allow the specification of complex algorithms to control the
(conditional and iterative) invocation of tools or the function-
like invocation of tools such that the output produced by a
tool is used as data in the control program. Examples of such
command languages are the sh and csh command languages found
in Unix ((64), (65)). More and more, the capabilities of
programmable command languages are included in current-day
operating systems and software engineering environments. -

The increasing availability of sophisticated terminals with
bit-mapped displays and a variety of input/output devices
raises the question of how to utilize these capabilities in a

system's command language. One response has been to define -

generic command languages that allow the command language
developer to define, through tables or other mechanisms,
various forms or patterns that should be used in interacting
with the user at the command language level. Several

possibilities in this direction are discussed in (66).

126

.. i.. . •- -, v rr "r rr r r --

A command language issue that is currently in the research
Sarena concerns tool aggregation. The basic question is: how

can a set of tools be decomposed into reusable tool parts and
deployed within a distributed host architecture ao that all of

the capabilities provided by combinations of the tool parts are
effectively and efficiently available to users? Command
languages relate to this issue since a command must be compiled
into a program that controls the invocation of the tool parts.
One solution to this problem has been developed as part of the
Toolpack project (25). Alternatives must be investigated,
especially for the case in which a particular user of the
environment has multiple access sites (office, home, etc.) and
needs to obtain the same capabilities from each. -

C. CONDUCT OF THIS SURVEY

"While the topics chosen for attention here span a broad
* range of the technologies supporting software development,

they do not cover all of the possible topics. We have chosen as
broad a spectrum as possible within the limits of our direct

*. knowledge and some important topics (such as management support
technology) have been missed.

Examples of technology at the various stages of maturation

were found by surveying the current literature. The primary
sources were: ACM Computing Surveys, ACM Communication of the
ACM, IEEE Computer, IEEE Transactions on Software
Engineering, and SIGSOFT Software Engineering Notes.

The assessment given here is corroborated by a study done
by the University of Maryland of software engineering technology
(67) and a study of testing technology done for the Office of L--
Secretary of Defense (see Volume II of (68)). In these

127

L.

studies, several companies and organizations were surveyed as to
the software engineering and testing methods, techniques and
tools being used for projects of different types. The results
pertain mostly to the state of practice in the surveyed
companies and are consistent with the "mature" classification
given here.

128

RUFRNUCES-

1. CONTEC 2000 Study Group, Computer Techno Forecast and
Weapon Systems Impact StudY (COMTEC-2000), 3 Volumee, HU-
"Air Force Systems Command, Tech Report 78-03, December
1978-July 1979...

2. P. Wegner (editor), Research Directions in Software

Technoloqy, MIT Press, 1979.

3. B. Arden (editor), What Can Be Automated?, MIT Press, 1980.

4. S. Redwine, E.Siegel, G. Berglass, Candidate R&D Thrusts
for the Software Technology Initiative, OUSDRE (E&PS), May,*1| 1981.•

5. "Opportunity Assessments," Appendix II in Strategy for a
i DoD Software Initiative, volume II, 1 October 1982.

6. P. Winetar and R.H. Brown (editors), Artificial
Intelligence: an MIT Perspective, 2 volumes, MIT Press,
1979,80.

7. A. Barr and E. Feigenbaum (editors), The Handbook of
Artificial Intelligence, 3 volumes, William Kaufmann, 1981-
83.

8. 0. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured
Programming. Academic Press, London, 1972.

L 9. E. Yourdon and L. L. Constantine. Structured Design.
Prentice Hall, Englewood Cliffs, New Jersey, 1979.

10. M. A. Jackson. Principles of Program Design. Academic
Press, London, 1975.

11. G. Booch. Software Engineering with Ada.
. Benjamin/Cummings Pub. Co., Menlo Park, California, 1983.

12. B. H. Liskov and S. N. Zilles. "Specification Techniques
for Data Abstractions". IEEE Trans. on Software
"Engineering, 1:1, March 1975, 7-18.

13. J. R. Cameron. JSP & JSD: The Jackson Approach to
_ Software Development. IEEE Computer Society Press,

"Silver Spring, Maryland, 1983.

129

,_ _ :- -j :

7--.

14. M. W. Alford. Distributed Computing Design System
Ouarterly Review. TRW, Huntsville, Alabama, October 1982.

156 ACM dIGSOcT Software EnZLneering SyMposium on Raid
Prototyving. Software Engineering Notes, 7:5, 1982.

16. See discussion ins W. Z• Howden• "Functional Program -"
Testing". IEEE Trans. on Software Engineering, 6:2, March
1980v 162-169. ,

"17. W. E. Howden. "Methodology for the generation of program

test data". IEEE Trans. on Computers. C-24, 1975, 554-560.

18. Software Research Associates, Inc., San Francisco,
California.

19. Reifer Consultants, Inc., Torrence, California.

20. W. E. Howden. "Functional Program Testing". IEEE
Trans. on Software Engineering, 6:2, March 1980, 162-169. A •

21. S. T. Redwine, Jr. "An Engineering Approach to SoftwareTest Data Design". IEEE Trans. on Software Engineering,
9:2, March 1983, 191-200.

22. L. A. Clarke, J. Hassell and D. J. Richardson. "A Close -
Look at Domain Testing". IEEE Trans. on Software
Engineering, 8:4, July 1982, 380-390.

23. S. J. Zeil. "Testing for perturbation of program
statements". IEEE Trans. on Software Engineering, 9:3, May
1983, 335-346.

24. L. D. Fosdick and L. J. Osterweil. "Data flow analysis in
software reliability". ACM Computing Surveys, 8:3,
September 1976, 305-330.

25. L. J. Osterweil. "Toolpack -- An experimental software
development environment research project". Proc. 6th
Intern. Conf. on Software Engineering, September 1982,Tokyo, Japan, pp. 166-177.

26. G. Bristow, C. Drey, B. Edwards and W. Riddle. "Anomaly
detection in concurrent programs". Proc. 4th Intern.
Conf. on Software Engineering, September 1979, Munich,
Germany.

130

27. R. N. Taylor. "A general-purpose algorithm for analyzing
con-current programs". Comm. ACM, 26:5, May 1983, 362-376.

28. M. E. Fagan. "Design and code inspections to reduceerrors in program development". IBM Systems Journal, 15:3,
1976, 182-211. 29.S. L. Hantler and J. C. King. "An
introduction to proving the correctness of programs".
ACM Computing Surveys, 8:3, September 1976, 331-353.

30. S. L. Gerhart, D. R. Musser, D. H. Thompson, D. A. Baker,
R. L. Bates, R. W. Erickson, R. L. London, D. G. Taylor
and D. S. Wile. "An overview of Affirm -- A specification
and verification system". Proc. IFIP Congress 80, October
1980, pp. 343-348.

31. B. A. Silverberg. "An overview of the SRI hierarchical
development methodology". In Hunke (ed.), Software
Engineering Environments, North-Holland Pub. Co., New York,
1981.

32. See discussion in: R. Balzer, T. E. Cheatham and C.
Green. "Software technology in the 1990's: Using a new
paradigm". IEEE Computer, 16:11, November 1983, 39-45.

33. See documentation for Unix System III, AT&T Bell
Laboratories.

34. J. K. Slape and P. J. L. Wallis. Conversion of Fortran to
Ada Using an Intermediate Tree Representation. Tech.
Report, School of Mathematics, Univ. of Bath, Bath, United
Kingdom.

35. R. A. Freak. A Fortran to Pascal Translator. Report
R80-3, Dept. of Information Sciences, The Univ. of
Tasmania, Tasmania, Australia, January 1980.

36. J. Martin. Applications Development Without Programmers.
Prentice-Hall, Englewood Cliffs, New Jersey, 1983.

37. S. H. Caine and E. K. Gordon. PDL -- A tool for software
design. Proc. 1975 Natn. Comp. Conf., June 1975, pp. 271-
276.

38. R. A. Snowdon and P. Henderson. "The TOPD system for
computer-aided software development". In: Bergland and L
Gordon (eds.), Software Design Strategies, IEEE Computer
Society Press, Silver Spring, Maryland, 1979.

131

39. D. I. Good. "Constructing verified and reliable
communications systems". Software H:ngineering Notes, 2:5, -
October 1977, 8-13.

40. I. M. Campos. "SARA-aided design of software for
concurrent systems". Proc. 1978 Natn. Comp. Conf., June
1978, Anaheim, California, pp. 225-236.

41. J. C. Batz, P. M. Cohen, S. T. Redwine and J. R. Rice.
"The application-specific task area".* IEEE COMputer.
16:11, November 1983, pp. 78-85.

42. B. Boehm. Software Engineering Economics. Prentice-Hall,
Englewood Cliffs, New Jersey, 1981.

43. M. H. Halstead. Elements of Software Science. North-
Holland Pub. Co., New York, 1977.

44. Special Issue. Journal of Systems and Software, 2, 1981.

45. P. Freeman and A. I. Wasserman. Comparing software
design methods for Ada: A study plan. Ada Joint Programs
Office, November 1982.

46. J. R. Dunham and E. Kruesi. "The measurement task area".
IEEE Computerp 16:11, November 1983, 47-54. -

47. J. Feldman and D. Gries. "Translator writing systems". .'
Comm. ACM, 11:2, November 1968, 77-113.

48. See documentation for Unix System III, AT&T Bell
Laboratories.

49. W. Wulf, B. W. Leverett, R. G. G. Cattell, S. 0. Hobbs,
J. M. Newcomer, A. H. Reiner and B. R. Schatz. "An
overview of the production-quality compiler-compiler
project". IEEE Computer# 13:8, August 1980, 38-49.

50. M. Ganapathi, C. N. Fischer and J. L. Hennessy.
"Retargetable compiler code generation". ACM Computing
Surveys, 14:4, December 1982, 573-592.

51. See documentation for Unix System III, AT&T Bell
Laboratories.

52. W. Teitleman and L. Masinter. "The Interlisp programming
environment". IEEE Computer, 14:4, April 1981, 25-33.

132

53. A. Goldberg. Smalltalk-80: The Interactive Programminq
Environment, Addison-Wesley Pub. Co.* Reading,
Massachusetts, 1983.

54. D. Teichroew and Z. A. Hershoy. "PSL/PSAt A computer-aided
technique for structured documentation and analysis of
information processing systems"I IEEE Trans. on Software
Engineering, 3:1, January 1977, 41-48.

55. M. A. Alford. "Software Requirements Engineering
Methodology (SREM) at the age of four". Proc. Com2sac 80, I
October 1980, Chicago, Illinois, pp. 866-874.

"56. A. I. Wasserman. "The unified support environment: Tool
support for the user software engineering methodology".
Proc. IEEE Computer Society SoftFair Conf,, July 1983,
Crystal City, Virginia, pp. 145-153.

57. W. E. Riddle. "The evolutionary approach to building the
r Joseph software development environment". Proc. IEEE

Computer Society SoftFair Conf., July 1983, Crystal City, rVirgini~a....... ., -

* 58. R. Balzer, T. E. Cheatham and C. Green. "Softwarc 1
technology in the 1990's: Using a new paradigm". IEEE
Computer, 16:11, November 1983, 39-45.

59. C. Green, D. Luckham, R. Balzer, T. Cheatham and C.
Rich. Report on a knowledge-based software assistant.

* Report KES.U.83.2, Kestrel Institute, Palo Alto,
California, June 1983.

60. See documentation for Unix System III, AT&T Bell
Laboratories.

61. N. Meyrowitz and A van Dam. "Interactive editing
systems". ACM Computing Surveys, 14:3, September 1982,
321-416.

62. Several articles on syntax-directed editors will appear in:
Proc. ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, Software
Engineering Notes, May 1984.

63. P. G. Hebalkar and S. H. Zilles. "TELL: A system for
graphically representing software designs". Proc. Compcon
Spring 1979 Conf., San Francisco, 1979, pp. 244-249.

133

i rb , rrr rr rr r

S------- -

64. See documentation for Unix System 1II, AT&T Bell
Laboratories. --

"65. See documentation for Unix System III, AT&T Bell
Laboratories.

66. T. Kaczmarek. "Command language design". Ins WIS L
Im-lementation Study Report -- Volume III -- Ba ound
Informationj Inst. for Defense Analysis, Alexandria,
Virginia, October 1973.

67. M. V. Zelkowitz, R. Yeh, R. G. Hamlet, J. D. Gannon and V.
R. Basili. The software industry: A state of the art
survey., Tech. Report, Dept. of Computer Science, Univ. of
Maryland, College Park, Maryland.

68. R. A. DeMillo and R. J. Martin. OSD/DDT&E Software Test
and Evaluation Project, Phases I and II Final Report.
Office of Secretary of Defense, The Pentagon, Washington,
D.C.

134

llli- , ,

CHAPTER VI CONCLUSIONS

I i u I

Software is becoming increasingly important to DoD. It is

pervasive in current DoD systems and is becoming more so. Many
IIII systems currently in the planning stages cannot operate without S

software, and long range planning documents indicate that DoD
system and mission performance will be increasingly dependent on

software. Software reliability and its prediction are not well

understood today and their importance will be rising as software 0

grows in volume, criticality, and integrated functionality. The
level of software integration is intensifying as systems become
more complex and software controls more system functions. In

addition to being reliable, software must also be survivable.
It must be able to operate perfectly after prolonged periods of
dormancy in hostile environments and when portions of the system

have been destroyed. Altogether the picture painted by the study
of future requirements is one of rapidly rising requirements .

along a number of dimensions.

Several additional factors may compound this picture of
future requirements presented in Chapter II. First, potential

* P adversaries may take unexpected steps to counteract planned
systems, so that the actual future requirements may be more

complex than those reflected in today's plans. Second, if
history is any guide, actually designing and building the

systems will turn out to be considerably more difficult than is P .
apparent today. Third, DoD requirements in aggregate will place

a more severe demand on the DoD software community than any one

"such advanced system viewed in isolation might lead one to
suppose. Thus, the rapidly rising future DoD software

-I requirements may be even more severe than they appear today.

135

-]I~II

.ti~ll

"F Conclusion 1: Future DoD software
iii ii ii• equirements are rising rapidly and •

becoming increasingly critical to
ar riin rapdlyan

the DoD mission.

A close look at a few major projects generally confirmed

m numerous prior reports on problems with the current state of

practice meeting current requirements. Problems with budget,
schedule, requirements, staffing, and product quality were found.

Nevertheless, in these few projects capabilities were being fielded

and, while it was often a struggle, current requirements generally

are eventually being met.

I Conclusion 2: The current software
i .state of practice is having difficul-

ties meeting current DoD requirements.

The study of fourteen softwate technologies indicates that

bringing a technology to the point of maturation where it is

popularized and disseminated to a large portion of the technical

*• community generally has taken 15-20 years. Other studies
indicate that 4-8 additional years may be required to propagate

that technology throughout a large organization. Technological

concepts and ideas that do not need computerized support or a

i change in the using community's mind set can mature faster.

Particularly important to technology transition are a recognized

need, a receptive target community, and a believable
i idemonstration of cost/benefit. Well-designed channeling of
. attention and support, an articulate advocate, prior success,

incentives, technically astute managers, readily available help,
latent demand, simplicity, and incremental extensions to current

technology were also identified as facilitators. Most

significant among the technology transition inhibitors are the

time it takes to transfer a technology internally, high cost,

136

"am`7 -7 Il777,.'._

contracting disincentives, psychological hurdles, and the desire

by programmers to "fiddle" with a technology that is too easily
modified. Technology originators most often inhibited
transition by small, simple mistakes that were easy to correct

once identified. The Government has also not always facilitated
technology transition. P

Conclusion 3: software technologies-- I III II IIU I Il/., .
have taken significant time to reach
widespread use -- 15 to 20 years.

The state of the art in software technology includes many

new or immature technologies that could improve the state of

5practice if brought to maturi.y, made usable, and used. In

Chapter V several examples of these were reviewed.

Conclusion 5: Many immature or unused

software technologies exist that offer

potential opportunities to improve the
future state of practice.

Conclusions 1, 2, and 3 point to an unfortunate combination

of conditions:

o Future DoD software requirements will rapidly increase

--.- -not just in terms of size, functionality and
pervasivess, but also in terms of reliability,
complexity, and criticality to DoD mission.

137

IN I.

= _ _ _ ,

o The current software state of practice has frequent

problems meeting today's requirements including
budget, schedule, product quality, and requirements
problems.

o Innovations in software technology have been taking a
long time to mature and become widely used -- typically

15 to 20 years.

These combined with consideration of two additional points

lead to the conclusion that a potentially serious software

problem exists. First, the state of practice relevant to
meeting a requirement in a given year is the state over the

several preceding years while the system was being specified,
designed, and built. Second, requirements in the aggregate will

present a significantly greater challenge than individually. As
embedded software proliferates in non-DoD industries such as
aviation, medicine, and communication, DOD could be faced with .
intense competition in the commercial marketplace for skilled

human resources. Thus substantial future gap between software-
related DOD requirements and the software state of practice is a
real threat particularly given the criticality of software in

many planned DoD systems.

Conclusion 6: A real potential exists

for a critical future gap between DOD

system and mission requirements and the
lfuture software state of practice's

ability to meet them.

Conclusions 4 and 5, however, point to some opportunities
that if properly exploited by DOD might help close this gap.

Many immature technologies exist and their maturity and use
could be accelerated. Problems in the current state of

practice, however indicate that technology is not the only
issue; management, acquisition, and personnel are also areas of
concern.

Conclusion 7: Opportunities exist for
i DoD to help close the potential future p

software gap between requirements and
the ability to meet them by accelerating
technology transition combined with concern
for management, acquisition, and human
resources.,

, U1-:3

13

"APPENDIX A

METODOLOGY

"This section describes the approach and methods used to
estimate future software requirements of DoD weapons systems.

-" Two methodolgies were employed: (1) a compilation of current
and planned major DoD programs and (2) a preliminary analysis of

"*'. ,'• DoD long range planning documents. Certain factors limited data

collection and analysis.

1. Survey

Data regarding future DoD software requirements were
obtained through a survey of select key DoD programs, under the
assumption that an understanding of present requirements might
lead to future requirements projections.

The Report of the Secretary of Defense Casper W. Weinberger
13 •to the Congress on the FY 1985 Budget, FY 1986 Authorization

Request and FY 1985-1989 Defense Programs, published February 1,
1984, identifies 160 key programs. This report contains brief
descriptions of major DoD programs and, in most cases,
development and procurement funding for fiscal-year 1983-86.

Of the programs identified in the report, at least 120 (or
75%) were determined to have a significant software component.
The program element number, in most instances, was used to

- obtain program descriptions from the Defense Technical
Information Center's (DTIC) Work Unit Information Summary (WUIS)
file. When program element numbers were not easily identified,
program titles were used to search the DTIC WUIS. Program
descriptions were used to identify those programs with a
software development component. In some instances, there was

A-1

difficulty in obtaining WUIS project summaries, therefore other
* sources such as DMS Market Intelligence RePOrts (1) and

telephone calls to project offices were relied on.

In addition, other programs with software development
components were identified in the online DMS Market Intelligence .K ,
Reports files where the *Computer" was listed as a major type of

equipment.

A cursory examination of 52 "new" programs with software
development requirements scheduled to begin funding in 1985 or

later was conducted. These 52 programs were selected from a
total of 65 programs listed in the RDT&E Annex of the Five Year

Defense Program (dated 1 February 1984) and scheduled to begin
funding in 1905 or later.

Thus, a total of 185 programs, including the 120 programs
identified from Secretary Weinberger's report, the 13 from the
search of the data base, and 52 from the RDT&E Annex, were given
preliminary reviews.*

For each of these 185 programs, information gathered
included: Program Title, Program Element Number, DoD Office,
Short Description of Software Activity, and Development Funds
for the years 1984 through 1989 (usually RDT&E funds).

The 185 programs were categorized by type of program to
facilitate comparison with future technolbgies identified by the
long range plans. Appendix B lists the categories and the
relevant programs under each.

A comparison of the total development funds (usually RDT&E)
for 1984, 1985, and 1986 for these 185 programs with the total
RDT&E budget for those years revealed that 45% of the total

*The Air Force has supplied a list of 238 Air Force programs
with software requirements.

A-2

.'

RDT&HE program, in terms of money, had been captured by the list
of 185 programs. The assumption was that major software
developments and modifications would appear in RDT&E funds.
Software maintenance included in operation and maintenance (O&M)

*. funds were not included in the list. Although the list was not
'" comprehensive, it did include a broad cross section of programs,

as evidenced by the categories in Appendix B. Since most of the
programs had been described in the Report of the Secretary of
Defense Casper W. Weinberger to the Congress on the WY 1985
BudgetPY 1986 Authorization Request and FY 1985-89 Defense
Programs, it was also assumed that the major programs (in terms
of money and importance to the national defense) had been
included.

r A telephone survey of a random sample of these programs was L
attempted but proved unsuccessful. In depth information about

i-, software size, cost, and functionality was difficult to obtain

"in a telephone survey of DOD Programs Managers in the limited
* time available. Software cost data is not readily available in

most cases. David Fisher also reported difficulty in isolating

software costs in his 1974 study Automatic Data Processing Costs
in the Defense Department, Institute for Defense Analyses. Some
difficulty was experienced in obtaining complete information
because some of the programs surveyed were in the procurement

process, others had security restrictions, or the program
* contract was an A-109 (2) competitive procurement.

2. Examination of DOD Long Range Plans

A review of selected DOD long range plans was conducted to
determine the scope of software requirements. The DOD does not
"always make available plans of programs more than five years in
advance, but the DOD Service long range plans describe
technologies, functions and systems that are projected for the
future. An analysis of these requirements for a software
component allowed for a first attempt at examining future needs.

A-3

L

Appendix C lists the long range plans which were examined.
An attempt was made to include a balanced representation of --

military service plans for maintaining the United States'
military posture until the year 2000.

"Plans were identified through a number of sources. The
DOD's Optimis (Operations Management Information System) l

database was searched for references to Service long range plans

and long range planning offices. It was found that the Army has
an office dedicated to developing an exchange of ideas on long-

range planning among the Services. This office produced a list

of Service offices concerned with long range planning. Appendix

D lists the offices and people contacted for each Service.

Other documents were identified through an online search of the
Defense Technical Information Center's Technical Report file.

Each Service plan was examined for future technologies

which were listed separately and analyzed for software

components. The number of technologies requiring software was '

compared to the total number of technologies and percentages
calculated.

Plans were also examined for statements specifying future

reliability requirements for software and for examples of new
software applications which are mission critical. 7,.

One multi-service space-related plan, the Battle
Management, Conuunication, and Date Processing, volume of the
Defense Technical Study Team (DTST) study was examined as an
example of a future planned DOD program involving massive
amounts of software (the Strategic Defense Initiative).

A-4

L..:•.÷ .. . *.. _ " • . , . o , • . ,• i . • , ,. -*° , •. •

(1) DMS, Inc., 1700 N. Moore Street., Suite 1230, Arlington,
.K VA, 22209.

(2) Circular A-109 Major Systems Acquisition, Office of
Management and Budget, April 1976, UNCLASSIFIED.

A- 5

[2u

..........

APPENDIX 8

PROGRANM CATEGORRZ RD*

The first part of this list follows the categorization in
the Report of the Secretary of Defense Casoer W. Weinberger to
the congress Fy 1915 Bud et, l9 1 Authorization
Regquest and"PY 1985-89 Defense ,rograms and comprises mainly
weapons necessary for Land, Naval, Air, and Nuclear combat. The -

q remainder of the programs have been organized into the non
force-specific categories of Communicationsa Command and
Control; Intelligence and Electronic Warfarel Combat Support,

.* Combat Service Support; and Research and Development. Programs
are listed only once even though they may qualify for more than
"one category (Command and Control, and Communications, for •*
example). The categories are as follows:

S.. Land Forces

*. Close Combat __-

Land Force Aviationr Air Defense "'
Artillery Fire Support
Deep Interdiction

Naval Forces

* Anti-Air Warfare
Anti-Submarine Warfare

P: Tactical Air Forces

Nuclear Forces
Strategic Offensive Forces
Strategic Defensive Forces

Communications

•. Command and Control

Intelligence and Electronic Warfare

"Combat Support

. Combat Service Support

Research and Development -

*Note: The 52 programs from the FYDP (Five Year Defense
Program) RDT&E Annex are not included here because the FYDP
is classified. Since they all begin in 1985 or later, they
would be included in the Research and Development category,
if they were here.

B-I

> IL • *. < " .. . i o : . . .-. ; ' * - .• ; - ,

.~~~~ ~ ~ ., '.

LAND FORCES

Close Combat
Bradley Fighting Vehicle (BFV) System
Light Armored Vehicle
X-1 Abrams Tank
TOW Missile System

Aviation
AN-64 (Apache)
Hellfire
Joint Services Advanced Vertical Lift Aircraft (JVX)
Light Helicopter Family (LHX)

Air Defense
Chaparral
Improved Hawk (IHAWK)
Patriot
"Product Improvement Vulcan Air Defense System
Short Range Air Defense Command and Control (SHORAD C2)
Stinger

Artillery Fire Support

Advanced Field Artillery Tactical Data System (AFATDS)
Artillery Computer System
Modular Universal Laser Equipment (MULE)
Multiple Launch Rocket System (MLRS)
"Multiple Launch Rocket System (MLRS) Terminally Guided
Submunition (TGSM)
Remotely Piloted Vehicles
TACFIRE

Deep Interdiction
Joint STARS (Surveillance and Target Attack Radar System)
Joint Tactical Fusion System (JTF)
Joint Tactical Missile System (JTACMS)

NAVAL FORCES

Anti-Air Warfare
Aegis Missile System A
DDG-51 Guided Missile Destroyers
Joint Tactical Missile System
Rolling Airframe Missile System

Anti-Submarine Warfare
Anti-Submarine Warfare Program
Light Airborne Multipurpose System (LAMPS) -

MK-48 Torpedoes

B-2 --

"M-50 Torpedoes
Rapidly Deployable Surveillance System (RDSS)

0S-60B Lamps MR II
Tactical Towed Array Sonar (TACTAS)
Vertical Launch Anti-Submarine Rocket

TACTICAL AIR FORCES

"Advanced Medium Range Air-to-Air Missile (AMRAAM)
A-69 Intruder

jai A-6E Intruder Improvements
AV-SB (Harrier)
P-14 (Tomcat)

'f, P-15 (Eagle)
,-16 (Fighter Falcon)
"PA-18 (Hornet)
.1H-60 D/E Nighthawk Modernization
Laser Maverick
Low Altitude Navigation and Targeting Infrared (LANTIRN)

NUCLEAR FORCES

Strategic Offensive Forces

H Air Launched Cruise Missile
B-1 Bomber
B-52 Bomber
Follow-on Basing Technology
ICBM Modernization

S- Minuteman Modernization
Peacekeeper Missile and Basing
Small ICBM and Mobile Launcher
Trident II Missile

Strategic Defensive Forces
Air Defense
Space Defense
Strategic Defense Initiative

COMMUNICATIONS
Air Force Satellite Communications

, Army Data Distribution System (ADDS)
Autovon/Autod in
Ballistic Missile Early Warning System (BMEWS)

, Defense Communications System
Defense Data Network
Defense Meteorological Satellite Program (DMSP)
Defense Satellite Communications System (DSCM)
Defense Switched Network (DSN)
European Command, Control, and Commuications System (EUCOM
C3)
Ground Mobile Forces Satellite Communications
Ground Wave Emergency Network

B-3

High Technology Light Division
Joint Tactical Communications (TRI-TAC) Program
Military Satellite Communications
Military Strategic and Tactical Relay (MILSTAR)
Minimum Essential Emergency Communications Network (MEECN)
NAVSTAR Global Positioning System (GPS)
Navy Fleet Satellite Communications System
Norad Improvements
Nuclear Detection System (NDS)
Pave Paws
SAC Digital Network
Satellite Control Facility
Satellite Early Warning System
Secure Voice Improvement Program
Single Channel Ground and Airborne System VHF (SINCGARS V)
TACAMO E-6A Aircraft

COMMAND AND CONTROL

Advanced Airborne Command Post (AACP)
Advanced Digital Optical Control System (ADOCS) - r-

Air Launched Control System
Conus Over the Horizon Radar System (OTH)
E-3A Airborne Warning and Control System (AWACS)
E-2C Hawkeye
European Command, Control, and Communications System (EUCOM
C3)
Integrated Tactical 3urveillance System (ITSS)
Joint Deployment System
Joint Interoperability of Tactical Command and Control
Systems (JINTACCS)
Maneuver Control System (MCS)
National Military Command System (NMCS)
Naval Command and Control System
Tactical Air Control System Improvement
World Wide Military Command and Control System (WWMCCS)
WWMCCS Information System (WIS)

INTELLIGENCE AND ELECTRONIC WARFARE
Airborne Self-Protection Jammer (ASPJ)
EA-6B Prowler
Electronic Warfare Technology Program
Joint Surveillance System
Joint Tactical Information Distribution System (JTIDS)
Missile Warning and Attack Assessment Sensors
Naval Tactical Data System (NTDS)
Operational Tactical Data System
Pave Tiger
Precision Location Strike System (PLSS)
Space Defense
"Space Track
"Tactical Information Processing and Interpretation (TIPI)-
Marine Air/Ground Intelligence System (MAGIC)

B-4

COMBAT SUPPORT
Chemical Warfare Defense Program
Combat Support Equipment
Next Generation Weather Program
Wide Area Anti-Armor Munitions

COMBAT SERVICE SUPPORT

B-1 Weapon System Trainer
C-17 Cargo Airlift

V.• Chemical/Biological Detection Warning/Sample Material
Concept
Education and Training System
•MK 92 Fire Control Maintenance Trainer
Modular Automatic Test Equipment (MATE)
Non System Training Devices

RESEARCH AND DEVELOPMENT

Advanced Materials Program
r. Consolidated Space Operations Center (CSOC)

Directed Energy Technology Program
Manufacturing Technology Programs
Medical and Life Sciences Program -.

Nuclear Weapons Effects Research Program (NWE)
Space Surveillance Technology
Strategic Computing Program
Survivable Radar Station/SitesVery High Speed Integrated Circuit (VHSIC)

w•'- -"•,•
71~

8,7

LS-5
-L...

- -a

77- . .

APPENDIX C

BIBLIOGRPHY Or LONG RANGE PLANS

ARMY

- Airland Battle 2000, HQ US Army Training and Doctrine
Command, Ft. Monroe# VA# August 1982. UNCLASSIFIED.

A Concept of a Future Force, Charles W. Taylor, Army War
Clege Strategic Studies Institute, November 1981.

UNCLASSIFIED.*

Long Range RDA Plan FY 83-97, Office of the Deputy Chief of
Staff for Research, Development and Acquisition, U.S. Army,
July 1981, SECRET.

r ~Prototype Army Long-Range Appraisal (PALRA) Enclosure I�-
Long-Range Requirements, BDII Corp. December 1981. SECRET.

Technolog Opportunities for Focus 21 (Appendix to Focus 21

document in progress by Army and Air Force) no date.
SECRET.

* AIR FORCE

AFSC Vanguard Planning Summary, DCS/Plans and Programs, HQ
Ai-rForce systems Command, Andrews Air Force Base,
Washington, DC# December 1983. SECRET.

*Air Force 2000: Air Power Entering the 21s Century, US Air
Force Office of the Chief of Staff, June 1982. SECRET.

SHORAD Systems For The Year 2000, Office of the Assistant
Chief of staff Studies and Aalysis, U.S. Air Force,
October 1983. SECRET.

NAVY

Future Battle Forces: initiative and 02portunitesy Delex
Systems Inc., February 1983. SECRET.

C-1

S.. . . i" 1.-'. :

Marine Corps Long Range Plan (MLRP), MARCORPS-2000, Deputy
Chief of Staff for Plans, Polices, and Operations,
Department of the Navy, HQ U.S. Marine Corps, May 1982.
SECRET.

"Master Plan for Embedded Computer Resources, Headquarters
Naval Material Commandf, April 1982. UNCLASSIFIED.

Navy Command and Control Plan, Office of the Chief of Naval
Operations, Washington, DC, March 1983. SECRET.

Post 1985 Naval Command and Control and Communications
Requirements Study, Naval Underwater Systems Center, May
1978. SECRET.

Project 2000, Office of the Chief of Naval Operations, June
1974. SECRET.

Sea Plan 2000, Department of the Navy, April 1.979. SECRET.

Surface Ship Combat System Master Plan, Chief of Naval -

-•_ Operations, OP-03, March 1984. SECRET.

DOD

Battle Management, Communicationsc and Data Processing,
volume v of the Report of the Study on Eliminating the .
Threat Posed by Nuclear Ballistic Missiles, Defensive
Technologies Study Team, October 1983. UNCLASSIFIED.

Military Space Systems Technology Model, Volume I.
Appendix. Long Range Planninjg bectives (Non-Validated),
General Research Corp., January 1982. SECRET-RD .

NATO

Proceedings of the 23rd DRG Seminar, Operational Research
fror the Selection and Design of Future Military Systems,
North Atanttic Treaty Organization, September 1982.
CONFIDENTIAL.

C-2

"APPEWDIX D

DoD Long Ranqe Planning Offices Contacted

- •ARMY

Deputy Chief of Staff for Operations and Plans
Strategic Plans and Policy
Long Range Planning
3B521 Pentagon --
Washington, D.C. 20310

Major Edward Lauer
694-8241

Assistant Chief of Staff for Information Managemen-t
r Plans and Programs Division L,®R

1D679 Pentagon
Washington, D.C. 20310
(formerly Deputy Chief of Staff for Plans and Operations,
C-4 Plans and Programs-prior to 5-11-84)

Charles ColelloS,697-0534

Deputy Chief of Staff for Operations and Plans
Force Development Directorate
Doctrine, Force Design and Systems Integration Divis 4 on
2B546 Pentagon O
Washington, D.C. 20310

*Major Mike Kendall
695-1861

Deputy Chief of Staff for Research, Development, and
Acquisitions
Army Research Technology
2E429 Pentagon
Washington, D.C 20310

*Lt. Col. William U. Freestone
697-0296

*-Briefing

D--1

AIR FORCE

Deputy Chief of Staff for Plans and Operations
Directorate of Plans
Deputy Director for Planning Integration
Long Range Planning Division
5D230 Pentagon -,
Washington, D.C. 20330

Lt. Col. William R. Caldwell
697-3717

Air Force Systems Command
Project Vanguard
Andrews AFB, MD

AV 858-3307

NAVY

CNO Executive Panel
Long Range Planning
c/o Center for Naval Analyses
2000 N. Beauregard St.
Alexandria, VA 22311

Commander Robert Harris
694-8422

Command and Control Directorate
Information Systems Division
5E571 Pentagon
Washington, D.C. 20350

Capt. Andy Tate
695-6792

JCS(JOINT CHIEFS OF STAFF)

Joint Staff J-5 - --
Strategy Division
1E965 Pentagon
Washington, D.C. 20310

Col. J.S.V. Edgar
695-5630

D-2

APPRUDIX 2
Analysis of Airland Battle 2000 for Future

Software Requirements
* S .

* %of
Capabili- Capabili-

Capabi- ties with ties with
lities Software Software

Functional Area Counted Components Components

Command and Control 17 15 88%

Close Combat 18 14 78%

Fire Support 21 13 62%

Concept for Air
Defense 18 16 89%

Intelligence and
Electronic Warfare 18 15 83%

Communications 8 8 100%
9.-

Combat Support,
Engineer, and Mine
Warfare 31 15 48%

Combat ServiceSupport 13 5 38%

Army Aviation 28 23 82%

E-1

Lo

FUTURE SOFTWARE DEVELOPMENT NEEDS

Command and Control

o survivability- chemical, biological, and radiological

protection and self-decontamination

o communications - smaller, lightery EMP and ECM-resistant-
reduced probatility of interceptl cryptographically
securel reliabley transparent to user

O management system - common DBMS for passing information
btween systems

o data distribution - integrated microprocessors combined
with communications allow filtering and multiechelon
distribution of data to provide information appropriate
to each level of command

o graphics - electronically produced, visually-
displayed, rapidly and sec'.rely transmitted to
disseminate operations plans and orders

o command posts - smaller in terms of size, not function
operate continuously in all combat environments
(nuclear, biological, chemical, and electronic
lethality dictate smaller) -

o automation (attributes)

- local and rapid programming capability
- voice recognition
- multiple path message routing
- access to all supporting databases
- common decision graphics
- fail-soft degradation
- usable for peacetime admini.str 4tion and training
- hard copy point-to-point messages
- word processing
- support decision-making only

E-2

1.2 .- i.
............

Close Combat

o Fire-and-forget precision-guided missiles bO

o Electronic deception systems

o Survivable C2 systems

o Obstacle neutralization systems 6O

o Robotics

o Directed-energy weapons and support systems

o Lethal and nonlethal chemical weapon systems

o Special effects weapons

o Multicapable weapons

o Continuous intelligence preparation of battlefield W-
proving a comprehensive and complete database of enemy,
terrain, and obstacle information

o Simplistic man-machine interface

o Simplistic operation of complex systems

o Training to fight on the integrated battlefield

Fire Support
o Field Artillery Attack Systems to perform the fire

support cont%-rol and coordination function (FSC2)

o Explore non-electronic means of communications

o Electronic deception systems

o Automated Assistance

o Support C2 of autonomous weapons systems

o Identify and establish human interface nodes

o Establish Force level DBMS

o Weapons platforms capable of autonomous operations

o Capability to acquire long range passive targets

E-.3

l .

o Explore robotics and materiel handling equipment (MHR)

o User selected multi-function black boxes

o Remote resupply/recovery

o Passive sensors-combat vehicle mounted

"- Nettable to 7S9
- Capable of autonomous support to fire units

Concept for Air Defense,

o Rail Gun (Hypervelocity)

o Smart or maneuvering projectiles

o Laser

o Particle beam

o Microwave

o Non nuclear EMP

o Jammers

o Shoot on the move

"o Fire and forget

"0 Self-initiating -

0 Antiair mines and barriers

o IR

o Acoustics

o UV

o Visible

E-4

"u'} ' '"::>'!

" ' Intelliyence and, llect•onic Warfare' (IEW} ,,.:?.i.

"" - o Rapid access to intelligence capabilities (national and ,
•-- ; multi-service co.and levels) both during peace and war._--=- : 9:'%"..

o Systems with no unique physical or electronic signatures ,.:
=: ::• "" to distinguish f]•'om non-lEW systems "...-,..

ll.=l• III[-I[!•I :,, O Unique IEW skills reduced to lowest level possible •:/,:-"., • , '

------ =:t,, through use of robotics and AI systems ,.2 "•

I.%

human operators ' .:.---
III In I ; e

S......iii ilia",, o Distributed intelligence data base •ii•.•i::

•,,, o Reliable, redundant connunications system !.

)ili in:==:='
ii•'•' •l O •,ess vulnerable sensor systems i"ii"

:_: 2}_• p•"
=e-me, O Automated threat projections •B,.

;aurae; ."'."'.
!lii l| {',' -. • ",7-'.11!1! •i' o Continual, real time access to national systems :":'":"
.===;; ,-4,-"--
lilil o specific-mission Jammers, _""'.._,.?i-iiiiil o

,.-:. -..
.. ZZ-'; "-'"- "-,•!! •!! I:! 0 Voice recognition devices,-'i::i:;'i: ...>.....:...
•=m= •.

--,,-,, o Automatic language translators ,.-,_-.-.
•ili Ill •.•,•.iiiiii' -"

o Digltal terrain data systems .•:=,.•t='-

ii" iii..... o Robotics and AI
.-•_, -=_--__, :...
-ii ii.i •'',

ii ii " Communications ,•• . • .o

_• _•_ _e
• -- iEl!'2]" O Simple to operate, self-dlagnostlc, self-repalr ', .

-__- _-_-,,• o Power systems that are mobile, reliable, have little o• •
•_• ;;; no acoustic, electronic or thermal signature and have =m
ii iii,. reduced dependency on fossil fuels. 7"'i:i
,El Ill !-.

am .,=. o Accurate position and location devices that provide ""
"" "" information automatically to C2 databases :•:•i'"
Hi im• I,,

in In! [• =!._

---- •= •= ,.

o

i: 'ic
• _,

,[
' ".- r,

o Automation of network management and switching equipment
that will provide automatic circuit restoration _

o Reliable and accurate data communications systems that
will allow distributed data processing and multiechelon
data distribution

o Alternative transmission means (laser, infrared light)
counter effects of directed energy

o Development of robotics and Al systems to facilitate
communications. ij

Combat Support, Engineer and Mine Warfare

o Light-weight, low-cost mine detection and neutralization
system permitting every assault vehicle to detect, and
report mines without operator assistance

o Standoff detection and neutralization systems

o Non-explosive neutralization systems for reduction of
conventional and remote mines located in areas where
explosive destruction is not practical or where clearing
of bypassed or breached fields must be done.

o Simple to erect, low cost fixed bridges-remotely . -''

delivered

o Remotely deployed intelligent, robotic, automatic weapon
stations

* o Local and wide area weather control

o Topographic systems-position reporting and recording and
terrain information and video terrain displays.
Automated terrain database

o Real time remote terrain sensors

o Automated terrain and weather analysis with graphic
output

o Beamed power to point of use from collection stations

o Computer monitoring of structures for wear and damage

E-6

Vl .7 •7-7k

I.

o Automated photogrammetric input and com3puter-based civil
engineering techniques for road design in difficult
terrains

0 Engineer vehicles with same base vehicle as the close
combat force, externally mounted, externally accessible
tool boxes. Integrated personnel decontamination chamber
and internally operable cybernetic tools. -

i o Robotics and sensors to maintain operations during rest
periods

o Fuses which identify friend or foe, can be command, time,
or time extended detonated and produced at low cost "

o One-shot cratering charge capable of hand emplacement or
remote delivery.

Combat Service Support (CSS)

o Robotics

o Secure communications

o Real time intelligence

o Remote processing

o On board test equipment

. Army Aviation

o Self-deploy
o Continuous operation is all types of terrain, weather,

battlefield environments

o Sufficient C 2 and CSS to perform or as part of combined
arms force

o Systems have no unique signature

o Refinement of man-machine interface

o Robotics, microelectronics, miniaturization

o Electronic mission aerial platforms and aeroscouts

iiiiS

0 Electronics deception systems

o Real time C2 intelligence databases

o Aerial retransmission and data burst systems

o Field artillery aerial observation platforms and
aeroscouts

o Area fire weapon system

o Sophisticated target acquisition systems

o Rapidly transport weapon systems, supplies and personnel
around battlefield

o Air to Air Weapons

o Visual identification

o Acquire and destroy enemy air defense weapons

o Aerial platforms electronically detect movement of enemy
aerial forces

o Terrain, weather sensor packages carried by aerial
platforms

o Dedicated aerial target acquisition systems

o Aerial transmission, reception, and retransmission
communications systems

o Self contained, automated remote communication units -
airlifted

o Delivery means for propaganda

E-8

:::. ~APPENDIX F "'

NAvy C2 PROGRAMMATIC ACTIONS

New Actions Requiring Software

Two-site ELF (Extremely Low Frequency) communication system

Surviving airfield location system

Reconstitutable communications

"Seize-key" interface for TACANO uplink

TW/AA (Threat Warning/Attack Assessment) to TACAMO alert and
standby airfields

ECC (Enduring Command Center) development for post-attack C2

ELF receivers to SSNs (Attack Submarine, Nuclear Powered)

Alternative two-way communications for SSN (DS) (Direct Support)

SSBN capability to search rapidly HY band

Afloat commanders timely access to relevant imagery materials

Programs/upgrades for Arctic communications

Interim command displays

NCCS (Navy Command and Control Systems) Ashore Software Support
Facility

l: Common modular software

TFCC/NIPs (Tactical Flag Command Center/Naval Intelligence
Processing Center) interface

C2 Processor

F- 1
4- II

TADIXS (Tactical Data Information Exchange System)

Afloat Correlation System Program

Link 11 operational improvements

Link 11 improvements compatible w/communication/crypto equipment

Link 11 improvement interoperable w/navy/joint/allied links

Automatic navy input systems development

Automatic gridlock capability

JNIDS (Joint National Intelligence Dissemination System) testbed

New protocols for testing of national/theater sensor systems

EWC (Electronic Warfare Coordinator) module program

IL Afloat ESM (Electronic Warfare Support Measures) and combat
systems

Generic ECM Electronic Countermeasures) Systems

Modified Actions Requiring Software

EC-130 navigation/communication system

Desk top computer based TSS (Tactical Support System)

Essential Existing Program Actions Requiring Software

Joint EBF SATCOM (MILSTAR) terminals

COMSEC (Communications Security) programs

JTIDS (Joint Tactical Information Distribution System) program

Multiple channel HF AJ

Implement CORS (Composite Operational Reporting System)
L

OTCIXS (Officer in Tactical Command Information Exchange System)

NAVSTAR GPS (Navigation Satellite Time and Sharing Global
Positioning System)

P-2

TFCC (Tactical Flag Command Center)

SHF SATCOM terminals

NCSS Ashore Upgrades

OSIS (Ocean Surveillance Information System) improvements

Probe Alert development

LEASAT (Leased Satellite)

NTDS (Naval Tactical Data System) Upgrades

fEMI (Electromagnetic Interference) control efforts

t_-

F-3

SL

APPENDIX G

Technology Case Studies O

(1) John Bailey. Cost Model Technology Transition. may
1984.

(2) Paul C. Clements, et al. Case Studies of Software
Engineering Technology Transfer. Tech. Memorandum,
Naval Research Laboratory, April 1984.

"(3) Richard A. DeMillo. Compiler Technology Insertion
Network Study. May 1984.

(4) John H. Manley. Technology Case Study: Software
Engineering Concepts. Tech. Memo, Computing
Technology Transition, Inc., Madison, Connecticut, May
1984.

(5) John H. Manley. Technology Case Study: Software
, ;Metrics. Tech. Memo, Computing Technology

(6) iTransition, Inc., Madison, Connecticut, April 1984.

"(6) John H. Manley. AFR 800-14 History. Tech. Memo,
Computing Technology Transition, Inc., Madison,
Connecticut, May 1984.

(7) Ann Marmor-Squires. Formal Software Verification as
an Example of Software Technology Transfer. May 1984.

(8) Ronnie J. Martin. DOD-STD-SDS: The Development of a
Standard. May 1984.

(9) Samuel T. Redwine, Jr. Structured Programming: A
Technology Insertion Case Study. Computer and Software
Engineering Division, Institute for Defense Analyses,
May 1984.

(10) William E. Riddle. "The Magic Number Eighteen Plus or
Minus Three: A Study of Software Technology
Maturation." ACM SIGSOFT Software Engineering Notes,
9, 2 (April 1984). (Includes case studies of Unix,
Smalltalk-80, and SREM.)

.(i11) William E. Riddle. Knowledge-based Systems as a Case ..
Study in Software Technology Maturation. SDAM/15,
software design & analysis, inc., April 1984.

(12) William E. Riddle. Abstract Data Types as a Case
Study in Software Technology Maturation. SDAM/16,
software design & analysis, inc., April 1984.

(13) David Weiss. Time Line for Development and Transfer
of SCR Methodology. February 1984.

G-J.

p -- I-¸

Cost Model Technology Transition

John Bailey -:

Software Metrics, Inc. .'

Falls Church, Virginia

,+

May 1984

ABSTRACT

Three well-known cost models are described historically and
technically. Also, a brief account of the history of software
estimation at IBM FSD is included. Although many organizations
are reluctant to describe in detail the techniques they use for
resource estimation, since privacy of this information is

essential for successful competition, some useful observations
by both modelers and model users are included here.

G--

G-2

--w-

Organization of Report

The histories of two black-box models, PRICE S (1) and SLIM

(2), and an open model, COCOMO (3), are the topics of much of

"this report. These are described in separate sections with
cross-referencing between the sections for comparison where

appropriate. Following these are some observations by Claude

Walston of the advent of software estimation during his tenure
.'. . at IBM Federal Systems Division's Software Engineering Cost

Unit. Following this account, are some overall conclusions about
the nature of inserting the technology of software cost modeling
into the industry. A final section summarizes some of the pros

and cons facing the further development, advancement, and use of
software cost models.

PRICE S History

The history of PRICE S dates back to 1961 when a parametric

hardware cost mode' ,. , '.-w fi:it developed at RCA for
cross-checking estimates .,L hardware devei opnt,ý,u cost. This

r2 model was used manually through the 60's on i.ateztnl ,irojesc~s at
the Morristown Missle and Radar Division. During this tihe it
also migrated to several other groups within RCA, such as
Government Communication Systems, Astro-Electronics, and the
Automated Systems Group.

Around 1969, PRICE H was automated to simplify its use,
however it was still used mainly as a cross-check for more
conventional techniques. In 1971, several government customers
became interested in the utility of this computerized programmed
estimation model and contracted with RCA for the use of the
model to estimate proposed hardware development work. Among
these customers were the Air Force, the Navy, and NASA. Since

* RCA helped in this way to establish the expected cost of a
project, they were not able to bid on these projects. To
eliminate the disparity, in 1975, RCA formed PRICE Systems as a

G-3

separate business entity to market models and to make them
available to competitors. - #

In 1977 Dr. Robert Park implemented a parametric software

estimation model using the methods employed in PRICE H as a
point of departure. When PRICE Systems announced the software
model, there were twelve immediate customers for it. These were
all customers of the PRICE H model who needed the additional
capability of having a software estimation tool. This appears
to be a unique example of a pre-captured market (see Editorial,

below).

Further refinements to the PRICE S model occurred in 1980,
with the introduction of the life cycle model, PRICE SL, in 1981
with a second revision to the basic model, PRICE 83, and in late
1982, with a revision to the life cycle model, PRICE SL2.
Currently, a micro-computer version is being developed which
will provide new output display capabilities, including color

and graphics.

At this time there are about thirty-five customers, with

more industrial customers than government ones. A customer pays . - --

$38,000 per year or $3,850 per month for the license plus dial-

up charges. Use of the software on one's own PRIME computer MA
costs $58,000 per yjaz. Second source access to the model is
available from some time sharing companies. Training from RCA
is additional. Included in the current list of customers are
NASA, FAA, Air Force, Army, Navy, Boeing, Ford Aerospace,

General Dynamics, General Electric, Grumman, IBM, ITT, Litton,
Lockheed, Martin Marietta, McDonald Douglas, Perkin-Elmer,
Sperry, Texas Instruments, TRW, and Westinghouse. It is

difficult to assess the extent of use the model receives at each .
customer's site, since customers are only identified at the
company level (no additional user site fees are required within - -

a customer company).

G-4

An interesting outgrowth of the PRICE user's group and
others was the founding of the International Society of 0
Parametric Analysts in the late 70's. This society recognizes

estimating as a profession and collects and shares tools and
"methods among its several hundred members. It has also
developed a language to share approaches to estimation problems
without revealing corporate secrets.

Technical Summary

The major input to the model is the size of the final

executable product measured in machine executable instructions. -* "
This has apparently remained unchanged from the first versions.
PRICE Systems provides example expansion ratios to accommodate
estimates in high level source lines. According to Dr. Park,
however, the specific language used is not overly emphasized in
the model since the coding effort is typically quite small when
compared with all other activities required for software

S development. In addition to a size input, two empirical indices
are computed from the user's data base of project attributes and

-.. historical data. These represent a resource factor and a
complexity factor.

According to Dr. Park, PRICE S attempts to simulate
experienced estimators and managers through the composition of

several sub-models. Through interviews and experimentation a
simulation/emulation data base was developed which is used by
the model. In this way, it seems parallel to COCOMO, and this
"is partially confirmed by Park. However, he maintains that a
wider variation in productivity is often obtained when adjusting
the input parameters to PRICE S as compared with COCOMO.

fEditorial

The immediate and automatic customer base for PRICE S
mentioned earlier is the only example of sudden external

- - G-5

, . .- • • • ••,: , ,.• ,, • • • , . , • , • • , , . -- -' -., , ,- , ; •-. V, wrr. rt , vr -v--I. - - '0w - -•~ i•

.1o'

acceptance for a new technique which was discovered in the
research for this report. It is assumed by PRICE Systems that

these customers had no other analytic methods of estimating
software at that time. However, there are at least two other
important reasons which could have forced this model into rapid
use. First, the government was known to have used PRICE H to
cost several of their hardware RFP's. Now that the software
model was available, it would probably also be used by the
government for the same purpose. This would seem reason enough
to have access to the same techniques for the purpose of writing
proposals to the government for software development. Second,
there was probably concern on the part of each PRICE S customer
that it not lack any of the capabilities of its competitors if
at all possible, implying that several companies would invest in
this tool even before it had established any kind of track
record.

Since PRICE Systems is a business entity, its product is
proprietary and costly. Unfortunately, this restricts
experience with the model to serious users who are probably not
very likely to share the specifics of their results. This
observation is also applicable to the SLIM model, which is also
the basis for a business enterprise. Nevertheless, although the
marketing department at PRICE Systems admits that the black box
niture of the product discourages some potential clients, it
maintains that it also attracts some customers. One would
probably expect that the ability of a tool to reduce the
complexity of a job, by reducing the amount of detail which must
be handled and analyzed, is highly desirable. For some, however,
this is apparently even true when much of the control over the
behavior and use of these details is taken away.

Dr. Park states that significant revisions, even though
they may represent substantial improvements, are difficult to
promote since many users are now comfortable with the current

G-6

model and might experience unwanted side-effects when using a
new version. This is probably a result of hiding the mechanics
of the model from the users, but on the other hand, users who
are interested in controlling and developing their own models of

-' the cause and effect relationships at their sites will probably

not rely on PRICE in the first place. One of the advantages of
producing the micro-computer version of the model is that it
will allow many other changes designed to attract new users

hii without necessarily being compatible with the PRIME-based
" version, according to Park.

One important aspect of any model or tool is whether it is
* general enough to continue to be useful and relevant as

techniques, standards, and practices evolve. According to Dr.
r7 Park, it is unknown at this time whether PRICE S has been used

successfully with software development approaches other than a
traditional waterfall cycle, such as rapid prototyping or
software assembly from components. However, he points out that
iterative enhancement has been projected successfully with the .
model.

CCCONO
History

Early development of the COCOMO model was begun by Dr.
' Barry Boehm in 1976 at TRW DSG, where he is currently Chief

Engineer of Software and Information Systems Division. At that
time, TRW was using the Wolverton model (4) to some extent and
had some experience with the early SDC data (5) and the Aron
model (6). This date coincides with the appearance of Putnam's

work at COMPCON that Fall (7).

"Initially, relationships (functional forms) between
software cost drivers and actual data were sought for ten

internal and ten external software development projects. In

G-7

1977, TRW increased its support for this work, due in part to

initial demonstrations of its utility and also because several
other resource modeling efforts were being published (Doty (8),

Walston and Felix (9), Boeing (10), and Putnam (11)). 2
In that year, the initial COCOMO model was developed which

was similar to several of the above models in different ways.

For example, it used an adjusted base line like the Doty model,
but was also phase sensitive like the Boeing model. In that

year and the next, COCOMO was required for use by the immediate
800-person organization. The estimates were not binding on the
managers, but served as a cross check. These estimates were

accomplished by hand by Boehm during this period, and the .i
results are described as credible.

Later in 1978 the model was computerized due to the

increased demand which resulted from its initial success. After
that, COCOMO was required as part of the proposal for all I
software projects in the division which were expected to take
more than five man-years. In addition, managers were to use at
least one other technique.

Technical Summary 2
COCONO is a composite model which means that it

incorporates a combination of functions (linear, multiplicative,
analytic, and tabular) to estimate software effort from project
attributes. Althouth both SLIM and PRICE S are proprietary
models, it would appear that they, too, are composite models.

COCOMO is an open model and is described in three progressively
more complex versions (basic, intermediate, and detailed) in
Boehm's Software Engineering Economics (3). In addition, for a _

nominal media charge, users can obtain a magnetic computer tape
of the programmed model for installation and calibration at
their own sites.

One of the hardest tasks in software development cost

G-8

modeling is determining the extent of the effects of different

attributes on development cost and schedule. Also, the -

interaction of these attributes is usually non-linear. In order

.v to supply basic relationships between project attributes and

productivity, Boehm employed both the analysis of project data

and the results of a two-round wide-band Delphi technique

administered to groups of software managers. In this way, a

kind of expert system is used within COCOMO where the knowledge I-.

and experience of software managers is used to drive some of the

calculations. This appears similar to PRICE S but the method of

developing the data base appears to have been more formal.

Editorial

Probably the most important aspect of this model is that it

is entirely open. The model is available on magnetic tape and
Boehm's book is a more-than-complete guide to getting started

with COCOMO. Interestingly, the complexity of the book hao been f727
known to discourage some potential users. This relates to the

comments made by the marketing department at PRICE Systems who

claimed that some of their customers prefer a black box to "do

5 the work" for them. In the final analysis, however, it would

appear the the effort to calibrate any of the models is

* - comparable.

A brief interview with Don Alley, deputy to Wyn Royce, who

is manager of Lockheed's Data Systems Engineering, a 700-person
department, revealed that the COCOMO model has been in use there

for about two years. It has been applied to about 20% of the

on-going projects and all of the new "significant" programs

(larger than $5M, according to Alley) since 1982. Often it is
used on an on-going project when it deviates from schedule or
when a general management tool is desired. The model has been

G-9

judged successful at this environment. In the Fall of 1982,

Lockheed used COCOR4O to estimate not only their own part of

MILSTAR, but also the sub-contracted pieces being developed by

TRW and General Electric. (PRICE S was also used and was found

to produce comparable results for the data provided.) As the

three companies bid and scheduled the work, it became necessary

* for the sub-contractors also to acquire and use the model. Allen

indicates that COCOMO provides more than just outputs for its

users. It also forces its users to think through project

parameters such as complexities and capabilities at various

environments. In this way, a discipline of project analysis is

developed as an important side effect.

SLIM .

History

In 1977, or approximately one year after the first

discussions of using the Rayleigh curve to depict software
development effort, Putnam developed the basic software equation
for this model while working at General Electric. After
discussions within GE about the utility of the work, he left and
started his own company (Quantitative Software Management) to
develop and market a life cycle resource model for software
development. This model is known as'SLIM for Software LIfe-cycle
Management model. A computerized version of the model was first
available on a DEC 20 through American Management Time Sharing

in 1979.

The model became available on micro computers with graphic

capabilities in 1981. Recently a Leliability model has been
added to SLIM which computes error rate and error densities.

The cost is $20,000 per year for a DEC 20 license and
$25,000 per year for the microcomputer version. This cost
includes training and unlimited consultation. Additional sites

G-10

within one organization are extra but pro-rated at a mutually
agreeable discount. A bare bones implementation is available on p
a Hewlett Packard 75 pocket computer for $10,000, although none
have been sold at this time. Also, a pocket calculator version
was developed for demonstrations and in-house use but was never
marketed. p

Currently there are about 30 defense users and 30
commercial users including Hewlett Packard, GTE Data Systems,

* Hartford Insurance, Tektronix, and foreign users in the UK and "
France. The growth rate has recently been about 40% per year.

With a data base of over 800 projects, Putnam expects to soon
expand into productivity measurement and software measurement in
general. The current thrust is to develop tools to

F automatically capture software development data. .

Technical Summary

"Although SLIM is a proprietary model, the underlying life
cycle curve has been published by Putnam. It is generally
regarded as a prescriptive tool, showing what should happen

* during development, and alerting managers when deviations occur.
Nevertheless, it is not entirely a theoretical model, but rather
a combination of an empirical model founded on theory of how
problems are exposed and solved in a large development effort.

Editorial

Because of the inclusion of the Rayleigh-Norden theory of
problem solving, SLIM differs from PRICE S and COCOMO which use
mainly empirically derived data tuned by past experience at the
user's organization to project cost. There are probably L.
advantages to either approach (and the proponents of any of the
models will generally explain these in some detail).

One comment from Quantitative Software Management was that

L the main impediment to more widespread use of SLIM or any formal

G-11

cost model is the lack of sophistication on the part of most

software development managers. It has been their experience that

managers usually come for help when they are in trouble and it

becomes obvious that something like this is important.

Typically, at the time they come for help, the software

developers are using a variety of informal techniques to plan a

project, most often adopting the schedule specified by the

customer or marketing department.

One common way for a software customer to take advantage of

SLIM (or any model) is to require that all bidders submit

historical data with their bid. In this way, the customer can

use SLIM to verify that the bid is reasonable for that

organization. This approach is recommended by Putnam over using ". -

the default values available in the model since these tend to
produce conservative estimates.

IBM FSD
S- •

History

Although IBM Federal Systems Division, currently consisting

of about 13,000 employees and 3,000 programmers and software

managers, has never published a software cost model, some of the

early work by Walston and Felix (9) provides some insight into

their initial direction. A brief conversation with Claude

Walston, now at ITT, provided some history about the data

collection and modelAng efforts there.

The internal software engineering effort was funded as a

result of a 1971 business-level decision to quantify software
production and to quantify the claims for modern programming

practices, such as structured programming. The effort was aided
by a simultaneous desire to unify and standardize on software

development terms and measures across the division. Later, in

1971 the first locally derived data became available. The SDC

work and other available studies at that time provided some

G-12

L-4

guidance into the modeling and prediction process. The Software
Engineering Cost Unit was formed, and with the support of a vice

"president, was able to obtain productivity and related data from
=ll Ithe indi.vidual sites in FSD beginning in 1972. Although this

unit was small, peaking at around 4 professionals, the support
of the vice president ensured the necessary impetus for its ,
success.

By 1974 several of the individual sites in FSD realized the
advantages of having local software engineering cost functions,

similar to their local hardware engineering cost functions.
These local groups realized they needed even more data than that

which was being requested by the central Software Engineering
in •Cost Unit. As a policy, the central Software Engineering Cost

Unit would only run their models on any new data after the local
n .: units had tried their own models. This was intended to

encourage local accuracy and to discourage dependency on the

central unit.

,leBy the end of 1974, about 100 projects were providing data

points for the calibration of the local and central models. Most

*- estimates for proposed software development which were then
funded, and subsequently tracked for validation of the models,

- *, were accurate to within 15% by this time.

, "Technical Summary

As far as is known outside the organization, no one

particular model is used. Rather a combination of modeling and

estimation techniques are made available to the managers.

Editorial

This brief view of IBM FSD was provided since it represents
.- an important, if coveted, data point in the study of the

emergence and popularity of cost modeling. It is unfortunate

"! L that so little has been published from this organization, but

G-13

.• r

the pattern of internal development and internal use seems
particularly comparable to COCOMO at TRW, although occurring a
few years earlier.

Recap

This is a distillation of both the aspects that have
facilitated and inhibited the use of the specific models
discussed, as well as software modeling in general.

Inhibitors Facilitators

PRICE S:
Need to estimate machine code Established name with
early in project. hardware model.

Closed model: start-up cost, Need to keep up with the
minimal user sharing, capabilities of one's -

Making revisions without competition.
impacting users is hard. Can be made as simple to

use as the user
perfers.

COCOMO:

Apparent complexity. Open model. Ease of
"Belongs to.competition." user sharing.Excellent user guidance

available.
SLIM:
Closed model: start-up cost, Based on theory of how

minimal user sharing, software development
"ought" to proceed.

General:
Evolving baselines. ISPA (society, see
Needs both managerial direction PRICE, above). Many

0 and low level user support. choices now available. --
Complexity: non-linearity of Success stories

cause and effects, amount of Customer involvement.
experience required, time lag Contractor teaming makes
from decision to fruition, model use contagious.

User sophistication slow.
Results from models are most

needed early, when they
always provide their worst
estimates.

G-14

Overall Conclusions

In some ways, the evidence of "the long hard road" of
technology transfer is not depicted in these accounts of the

. development of several of cost models. The four accounts here
a show about a three year lag between initial investment and

substantial utility. (IBM FSD from 1971-74, COCOMO from 1976-
- 78, SLIM from 1977-79, with PRICE S having some of its pre-1977

development subsumed by the PRICE H work.) There are at least
two possible explanations for this apparent pattern. First,
"cost models appear to be evolutionary as opposed to
revolutionary. They are not developed in a vacuum but rather
build on work that has come before and attempt to improve on the
shortcomings of their predecessors. (If it were necessary to .
"cite some common point of departure for empirical modeling it

-- would probably be the SDC data reported in 1966 (5). Although it
S-- .may not be difficult to improve on that data, it remains one of

*•i i the largest data bases even today, and at the time represented a P.
pioneering effort in the field.) Therefore, each model attracts
more followers to the field, though no single one can take
credit for unilaterally advancing the state of the art.

The other explanation for the lack of evidence of the

difficulty of inserting cost modeling into standard software
- development prac'tice is that it just has not been inserted yet.

Although the accounts provided here would suggest that an

_ organization is likely to take stock in a locally derived model
_• (or perhaps this is just the survival of the fittest, with the

unfruitful efforts being cancelled), the development and use of

,. formal models is not characteristic of the industry as a whole.
Most organizations seem to be driven by budget and schedule

" "- which are set by the customer or by a market analysis. Most,
however, have at least idealistic approaches to the organization
of labor and tasks required to deliver a product. Although this

G-15

• a i

understanding is the starting point for model development, the
majority of organizations go no farther. DeMarco characterizes
the typical software development estimate as "the most
optimistic prediction that has a non-zero probability of coming

true" (12).

An important aspect of using any of these models is -

experience. Since no two organizations respond exactly the same
way to the various software development attributes, models must
be calibrated to the user's organization. Similarly, a user must
gain a feel for using a model and interpreting its output. For
example, Park admits that the happiest users of PRICE S are the
frequent users, while occasional users may be dissappointed.

Pointing to a fundamental problem with modeling software
developments, Boehm suggests that the software development
process is insufficiently understood to yield to rigorous
statistical techniques (13). Techniques such as factor analysis

* and partial correlation will often yield insights but will
probably not produce any true quantitative, replicable, and *,

universal relationships given the current diversity of software
development practices and environments. This is mainly due to
the non-linearity of the cause and effect relationships which
need to be quantified.

Empirical, algorithmic models suffer from certain
weaknesses which probably provide some with sufficient excuses
to avoid them. One obvious limitation is that their accuracy is
constrained by the accuracy of the input data and also hy that
of the data used to calibrate them. However, Boehm states that
the main difficulty is their inability to anticipate the effect
of a base line change. For example, if all previous projects
have been completed on one manufacturer's hardware, then it will
be impossible to factor in the effect on productivity of using
different hardware for the next project. This was experienced
at the University of Maryland Software Engineering Laboratory

G-16

Sh .I .- . ' ' - .. . - . . . " r " *. - *.' .' S" " • " : '' • • : . . : '•

= r r

immediately after the publication of the Meta Model (14). The
next project used independent verification and validation for
the first time at that organization. No previous observation
could have been made as to the effect this would have on
"productivity and therefore the attribute "no IV&V" was built
into the base line relationship of project size to cost. When
the model was used to predict the cost of the project which used
IV&V, it was in error by nearly 50% (15). To attempt to answer

-K to this effect, most models provide defaults for the effect of
various factors for which there is no experience at the
"environment under consideration.

Smim

L

G-17

"• Z~I--m

Sumuary

The following aspects of the field of software process

modeling are encouraging:

- Modeling has become a competitive field providing

customers with substantial choices.

- At least one society, the International Society for

Parametric Analysts is devoted to solving the problems

inherent in modeling a complex human non-linear

process.

- The utility can be felt in less than three years from

the time an organization appropriates a useful amount

of support for a modeling effort.

- Modeling such as this is an important pre-requisite to

any further measurement an organization has decided to
attempt; it is a first step into a quantitative self-

evaluation.

The following aspects of the field are discouraging:

- To the novice, software modeling is a frustratingly-

complex and imprecise occupation.

- An organization that decides to shop for a model can
be confused by the competition and associated
advertising.

G-18

- The decision to perform data collection must be made

at the level of the individual projects or it will not

be done meaningfully, yet support for it must be
* demonstrated at higher corporate levels or the effort

will not survive (16).

*

- The utility of a local modeling effort or metrics

group will probably not be felt in the same budget

year that the first efforts are funded.

III

Formal software development modeling is not a standard

practice within the industry today. The recurring theme in

discussing the spread of software cost modeling with various
experts is that, in a contract world, it is often up to the

customers to make the first move. By requiring historical data
"with bids or by announcing that a model will be used to develop

* * the approved budget, a customer can sufficiently "raise the

awareness" of (as in "leverage") the software developer.
Therefore# in the final analysis, this must become a competitive

!requirement before the overhead will be invested on the part of

all software vendors.

G-19

* r r r ... r . . r

i '<•:"~.

Appendix

Software Cost Modeling Chronology (17)

1956 - H.D. Benington presentation, ONR Symposium. First
reporting of large SW project costs.

1964-65 - SDC regression study of 169 projects and their
attributes.

1969 - Aron model published.

1971-74 - Internal IBM FSD data collection and model
-~ development.

1974 - Wolverton model published.

1976-78 - Internal COCOMO data analysis and model
development.

1977 - Doty model published.
- Walston and Felix publish some IBM FSD results.'
- Boeing model published.

1977-79 - SLIM developed and published.
- PRICE S developed and published.

* 1979 - GRC models published.
- Albrecht publishes function point estimating

techniques for early estimates.

* 1981 - Bailey & Basili propose meta-modeling technique
after no single model confirms NASA Goddard SE-
Lab data.

- COCOMO published.
- GRC model survey and validation finds none

completely satisfactory.
- Dirks publishes Grumman model.
- Tausworth publishes JPL deep space model.
- Phister proposes theoretical model of software

development based on programmer inter-
communications and error detection.

* - - - GSA software conversion cost model published by
Houtz and Buschbach.

G-20

1982 - Theoretical model of software project dynamics by
Abdel-Hamid & Madnick.

i i - Simulation model of software life cycle by
Duclos.

. -Early sizing techniques demonstrated by Itakura
"and Takayanagi.

Early sizing from state machine designs shown by
Britcher and Gaffney.

1 - DeMarco proposes early sizing through structured
analysis metrics.

1983 - Jensen model published.
- SYSCON Corp. publishes a software support cost

model. -.-

G-21

S....]i ii i

Acknowledgements

Much of the information for this report was obtained
* through interviews of Robert Park, Larry Putnam, Doug Putnam,

Barry Boehm, and Claude Walston. I am grateful for their
* assistance and patience.

G-22

it References

-• (1) RCA PRICE Systems, "PRICE Software Model: Supplemental
Information," RCA, Cherry Hill, NJ, March 1978.

(2) "SLIM System Description," Quantitative Software
Management, Inc., McLean, Va., 1980.

(3) B.W. Boehm, Software Engineering Economics, Prentice Hall,
Inc., Englewood Cliffs, N.J., 1981.

(4) R.W. Wolverton, "The Cost of Developing Large-Scale
Software," IEEE Transactions on Computers, June 1974, pp.
615-636.

* (5) B.A. Nelson, Management Handbook for the Estimation of
Computer Programming Costs, AD-A648750, Systems Development
Corp., October 31, 1966.

* (6) J.D. Aron, Estimating Resources for Large Programming
Systems, NATO Science Committee, Rome, Italy, October 1969.

(7) L.H. Putnam, "A Macro-Estimating Methodology for Software
Development," Proceedings, Fall COMPCON 76, 13th IEEE
Computer Society International Conference, September 1976,

* , pp. 138-143.

(8) J.R. Herd, J.N. Postak, W.E. Russell, and K.R. Stewart,
Software Cost Estimation Study - Study Results, Final

L Technical Report, RADC-TR-77-220, Vol. I, Doty Associates,
Inc., Rockville, Md., June 1977.

(9) C.E. Walston and C.P. Felix, "A Method of Programming
Measurement and Estimation," IBM Systems Journal, Vol. 16,
No. 1, 1977, pp. 54-73.

(10) R.K.D. Black, R.P. Curnow, R. Katz, and M.D. Gray, BCS
Software Production Data, Final Technical Report, RADC-TR-
77-116, Boeing Computer Services, Inc., March 1977.

(11) L.H. Putnam, "A General Empirical Solution to the Macro
Software Sizing and Estimating Problem," IEEE Transactions
on Software Engineering, July 1978, pp. 345-361.

: (12) T. DeMarco, Controlling Software Projects, Yourdon Press,
New York, 1982, p. 14.

(13) B.W. Boehm, op. cit.

G-23

I-

(14) J.W. Bailey and V.R. Basili, "A Meta-Model for Software
Development Resource Expenditures," Proceedings of the
Fifth International Conference on Software Engineering,
March, 1981, pp. 107-116.

(15) Personal experience, and communication with Dr. Gerald Page
of Computer Sciences Corporation.

(16) This conclusion was extracted both from personal experience
and from discussions with Claude Walston who has worked at
both IBM and at ITT, which have different styles of
corporate management and different levels of policy-making
affecting the software development components.

(17) For additional chronology, see also B.W. Boehm, "Software
Engineering Economics," IEEE Transactions on Software
Engineering, Vol. SE-10, No. 1, January 1984, pp. 4-21.

G-24

Case Sbdi of Software Eng~nedng Tedlru*2gy Transfer

Technical Memorandum

Paul C. Clements
Lou Chmura
Stuart Faulk

Preston Mullen
Alan Parker
David Weiss

r
Naval Research Laboratory

-3April 1984

I

S" G-25

LiI

INTRODUCTION

This memorandum describes several examples of the transfer

of the software engineering technology developed and applied in
the Naval Research Laboratory's Software Cost Reduction (SCR)

project, in which modern software engineering techniques are
being used to specify, design, and build a model system so that
the techniques can be emulated by others. The system chosen as
a model is real and complex -- the onboard flight software for
the Navy's A-7E aircraft. The principal techniques used include
a new method for specifying software requirements, a method of

module decomposition and design using information-hiding, a

method for building the system in increments by specifying the
* "uses" hierarchy, and a method of using cooperating sequential

processes to implement the run-time structure of the system.

Each case study consists of sections explaining the

application area in which particular techniques are being used,

the technology that was transferred, and the technology transfer
process. Aids and obstacles to the transfer process are
discussed in each case, as well as the effects of the technology
in its new application.

The case studies are given in the next section. The last

section reports the conclusions from the SCR experience in tech-
*. nology transfer and suggests ways in which technology insertion
* may be made more effective.

The SCR project is a significant step in the transfer of
modern software engineering technology into the programming
workplace. It breaks many of the software bottlenecks described
by Graham (Gra82) by providing a complete, integrated software

G-26

* -

development methodology. Evidence cited by Graham indicates

* that 20 years is the typical delay between the time a laboratory
prototype is built and the time the use of the innovation becomes
widespread. SCR is reducing this delay time for software engineer-
ing technology by combining a number of techniques that have
been in the laboratory prototype stage into a working model that
can be distributed and used widely. As is shown in the case
studies following, this is achieved by publication of SCR documents
in the open scientific literature, by publication and presentation
of technical papers describing the SCR technology, and by the
provision of consulting services by the SCR project staff to
others interested in using the technology.

G--

I

LL

G-27

II

Introduction References

(Gra82) Graham, Alan K.; Software design: breaking the bottleneck,
IEEE Spectrum, pp 43-50, March 1982

G-28

L

-- [--

Case History: Bell-Northern

0 1. ApIlieaton

SCR software design technology has been used in the develop-

ment of the DMS 100 (Digital multiplex System) family of digital
telephone switching systems developed by Bell-Northern Research

-*_Ltd.. in cooperation with Bell Canada and Northern Telecom (1).
DMS is a large, software-controlled real-time switching system.

* The software implements a diverse set of telephone functions as

- well as systems for administration and maintenance.

i 2. Technology Adopted

The DMS 100 system design philosophy is the same as that of

"r the SCR -- modularity, hierarchical design and information hiding. k
Different telephone companies require different software
features; hence, the system must be easily configurable to
implement a variety of slightly differing software packages. In

r Iaddition, the software must be frequently changed to add new
features or correct errors. The concepts of modularity and

I information hiding are used to limit the effects of changes or
* corrections. The system is designed as a *uses" hierarchy of

modules, allowing a variety of slightly different systems to be
li "easily generated by changing the subset of modules implementing

a given system.

3. How Technology Was Transferred

The design methodology was derived by the personnel of
Bell-Northern Research from the SCR methodology that is

_ !described in (2), (3), (4) and (5). According to the project

director, prior experience with other methodologies had con-
vinced the development team of the usefulness of advanced
software engineering techniques in general and the methods
proposed by Dr. Parnas in particular. The team developed a

L_ language (PROTEL), linker, and library maintenance system to I...
support the methodology. With these tools, the methodology

. proved natural and easy to use.

G-29

S1.

- _-

4. Obstacles to Txtanafer

None.

5. Aide to Transfter

None.

6 i IResults

The DNS 100 family of systems is currently operational and

is being successfully marketed by the parent company. According

to the project director# mince the release of the DMS 100 system,

Bell-Northern has become the largest supplier of such telephone

switching systems in the United States. He attributes this success

to the ease of configurability and maintenance of the DM6 100-

software. An overview of the system and the design methodology

employed are given in (1).

G-30

Ref erencem

1.4 , .. Real Time. Syte..." ., Proc ;•,. Fort Intl. ConE•. onL Software •,•• . .

1)Lasker, D.M., "Module Structure in an Evolving Family of
Engineering (September 1979), pp. 22-28.

(2) Parnas, D.L., "Designing Software for Ease of Extension and
Contraction", Proc. Third Intl. Conf. on Software Engineering
(May 1978).

(3) Parnas, D.L., "On the Criteria to be Used in Decomposing
Systems into Modules"# Comm* ACM, Vol. 15, No. 12, pp. 1053-

* 1058 (December 1972).

(4) Parnas, D.L., "On a 'Buzzword': Hlierarchical Structure",
* Proc. IFIP 1974 (1974).

*(5) Parnas, D.L., and Wuerges, H., "Response to Undesired Events
in Software System.", Proc. Second Intl. Conf. on Software
Engineering, pp. 437-446 (October 1976).

I-

G-!

| ,

Ca.e History: Bell Labs

Starting in 1978, AT&T Bell Laboratories (BTL) in Columbus,
Ohio# began using various portions of the SCR methodology in

their system development process. The first project to use these

techniques was the No. 2 Service Evaluation System (SES), which

is a multiprocessor data acquisition and transaction system for

telephone network quality control. The project took place between

1978 and early 1981. The development team consisted of approximately

10 persons.

2. Technology Adopted

Most of the SCR methods for requirements specification and
system design were adapted for use in this project. A paper

* (Hester) published in 1981 describes the methods as they were

, applied to No. 2 SES.

In the requirements specification, the techniques used for
the A-7 were modified to suit the "transaction-oriented nature

of the No. 2 SES". Performance requirements, responses to undesired

events, assumptions about changes, required subaets, and glossary
are dealt with essentially as' in (REQ). The section on modes is

* •absent. In general, formalisms are simpler than in (REQ). Other
aspects of the organization of (REQ) are modified as noted below:

In the section on data items, data types are introduced to
describe data items. Data type names are bracketed +...+. The

"intermediate data item" (the output of one function used as

input to another, but not directly visible to user) is introduced

and used to facilitate breaking up functions into subfunctions
that are likely to change separately.

A new section on communications protocols was added, documenting

system interaction with external hardware, external software
systems, and users (command syntax). It seems to generalize

G-32

• - - .. ,..* :

information from (REQ) section 1 (computer characteristics) and
2 (hardware data items). The section on user transactions and
reports corresponds to the "functions" of (REQ) and defines user-

visible functions in terms of data items. User transactions
"allow users to parameterize requests, such as report generation

commands. Other functions include "computer operations, data
base interactions, ... maintenance, and spontaneously generated

reports". Event tables as in (REQ) are not used.

Other documents based on those of the SCR project include

the module decomposition document (based on the A-7 module guide
(MG)) and individual module interface specifications.

... 3. Now Technoloqy Was Transferred
r

The technology was transferred in the following ways:

(1) A full-time technology transfer agent position was
created within BTL. The agent was responsible for
recommending technology to be transferred. He was
available to discuss the technology and to help
projects start to use the technology. He educated
"himself in the SCR technology through perusal of the
available technical literature and through infrequent,
informal contacts with SCR project personnel. He also
arranged for a visit to BTL by the principal

iL investigator of SCR, Dr. David Parnas (see next item).
(2) Dr. Parnas spent a short period of time (less than 2

weeks) at BTL describing the technology and discussing
it with potential users.

* (3) BTL project personnel used SCR documentation, pub-
lished by NRL and in technical journals and conference

'-"- - proceedings, as models on which to base their use of
the technology.

4. Obstacles to Transfer

The No. 2 SES project was handicapped by adopting the SCR
principles after the project was underway, making no allowances

in scheduling or staffing; the principles had to be learned and
tuned even as they were being used in system development. In

G-33

addition, it appears that some members of the small team may

have resisted generating so much documentation, feeling that

i ithey had already mastered the requirements and design decisions.

5. Aids to Transfer

Technology transfer in this case was aided by the project
leader's belief in the SCR methods based on publications in the

S" -professional literature and by the existence of the BTL technology
transfer agent whose responsibilities included learning and under-

"standing new software engineering technology.

A major aid in the No. 2 SES came when the SCR project's
. -_ principal investigator and the originator of many of the fundamental

SCR methods was tetained as a part-time consultant during the
critical time when the methods were being adopted.

6. Results

The No. 2 SES was deployed on schedule in 1981. The extra
time invested in thoroughly documenting requirements and interfaces
was recouped during the exceptionally smooth system integration.

As a result of the success of this initial experience with

"these methods, BTL are now using them in a number of projects of
various kinds. To quote from (Utter),

The usage curve has been upward; three times as many pro-
_ jects have adopted it in the past year as in the first two.

Every project has continued to use it. All the use has
been done on development projects within existing
schedules- with no specific training.
The publication of (Hester) in the Bell 'System Technical

JourrPI mnd the existence of worked-out examples has increased

the spread of these techniques in the organization. Project
* managers can see how successful the tech-niques have been for

others, and documents from existing projects (especially the SCR
project and the No. 2 SES) can be used as paradigms for new
projects. One recent figure from BTL indicates that 6

G- 34

r K

requirements specifications using these techniques have already

S been completed and another 16 are in progress. Within AT&T Bell

Laboratories the techniques are now known by the title "System

Design Through Documentation", or SDTD.

6• nUnfortunately, detailed information on individual projects

(such as copies of requirements or design documents) or size of
the completed systems is not available, because BTL consider the

information proprietary. Similarly, there is no good detailed
public data on the extent of usage. Nevertheless, it is clear

n .that software developers at BTL have been able to use successfully

the underlying SCR methods based on information hiding, separation

--- "of concerns, and disciplined documentation, modifying them when

r necessary to fit their own projects. Furthermore, the same set

of modified techniques has sufficed for various kinds of projects;
it is not necessary to reinvent the techniques for every application.

G-3-

l||il-I5

IlII F--*--*--------.

17

References
S

(Hester) S.D. Hester, D.L. Parnas, D.FP Utter, "Using Docu-
mentation as a Software Design Medium." Bell System Technical
Journal, Vol. 60, No. 8, October 1981, pp. 1941-1977.

(Utter) D.F. Utter, "Properties of the System Design Through
Documentation (SDTD) Methodology".

(REQ) Heninger, K.L., Parker, R.A., Parnas, D.L, Shore, J.E,
Software Requirements for the A-7E Aircraft; NRL Memorandum Report
3876; November 1978.

(MG) Britton, K.H., Parnas, D.L., A7E Software Module Guide; .
NRL Memorandum Report 47021 December 1981.

_ --

G-36

r r

Came History: Softech, Inc.

1. Awvlication p
The DWS/CS Emergency Preset (EP) weapon control system was

* designed to be installed aboard Trident submarines as a backup

to the primary fire control system. The overall system require-
Sments call for a system based on a single processor and software

"of "modest" size (under 100,000 instructions), whose operation
and interfaces would be compatible with those of the main fire
"control system (known as DWS/CS). Project management wished to
avoid problems experienced with the original DWS/CS: difficulty
of use (and of training users), expense of change, long familiari-
zation time for software maintainers, and lack of a clear and

* definitive specification.

2. Technoloqy Adoted,

Under NUSC and NAVSEA sponsorship, Softech, Inc., produced
an EP software requirements document modeled on SCR's A-7
requirements document (REQ). The EP document completed in 1982

-. follows (REQ) closely in most respects. The exceptions are

- described below.

I The most obvious departure from (REQ) is the use of
Softech's proprietary Structured Analysis and Design Technique
(SADT). This graphical aid is used in two ways. First, SADT
was used as a systems analysis tool to generate "activity

models" of the EP system and its environment; the EP require-
ments were then analyzed using these models. The developers
found this necessary because, unlike the A-7 project, which used
the existing OFP as the basis for the detailed software
requirements, there was no existing model from which to identify
the detailed EP requirements and, indeed, no clear understanding
of them.

The second use of SADT was to model the operating modes and

L

S~G-37

L.

mode transitions of the system. These "mode models" served as a
"usual case" abstraction of the normal sequence of system

operation and formed the basis of the mode tables in the style
of (REQ); the mode tables were then filled out with transitions
handling all the unusual mode transitions that could also arise.
It should be stressed that the standard mode tables do stand
alone as a

definitive reference; although they contributed to the development
of the detailed requirements, the SADT drawings now serve only

* as introductory overview material.

* The other departures from (REQ) are extensions of existing

concepts. For instance, to specify the behavior of a general-
purpose display device, the EP requirements formalizes the notion
of a "semantic entity", i.e., a logical output datum considered

* •without regard to the conditions determining when and in what
format it is sent to an output device. The document then specifies
a set of functions that calculate these semantic entities, a set
of "display" functions that display certain semantic entities on
the display console, and a set of "set and transmit" functions

* that send certain semantic entities to weapon system hardware.

In a minor modification to the (REQ) nomenclature# the con-
cepts of "mode" and "stage" are unified in a generalized mode

* that can have "subordinate" modes. As usual, a mode is simply
-* represented by a set of conditions; if a mode has subordinate

modes, then its conditions must hold in each of the subordinate
modes, with the subordinates being distinguished from one another -

by additional conditions.

3. How Technology Was Transferred

The decision to adopt the SCR Requirements format was made

independently by the contractor on the basis of the published
A-7E Software Requirements document and the contractor's ongoing

evaluation of software engineering methods. The contractor felt

G-38

that the SCR methods would help avoid the problems, mentioned

I above, that had plagued the original DWS/CS system. There was

no contact between SCR personnel and the contractor, nor was any

, * incentive paid to the contractor by the sponsor to encourage the

use of SCR techniques. The cost of the technology transfer was

simply the time and effort incurred by the contractor to learn

and, where necessary, extend the SCR techniques.

* 4. Obstacles to Transfer

The major obstacle to technology transfer was the hesitancy

of some contractor personnel to try out unfamiliar methods, and
an initial inclination to modify the methods unnecessarily. As

an example, there was considerable discussion in the early stages
of the project concerning whether the SCR notation should be

retained or replaced. Some time was spent in developing and
then discarding replacement notation.

5. Aids to Transfer

Aside from the existence of the published SCR requirements
document and associated descriptive papers, no specific aids for
transferring the technology were used. There was no contact
between the SCR project and either Softech or NUSC. But there

was contact between Softech and another contractor who had experi-
ence with the SCR methods.

- 6. Results

* The contractor produced a complete detailed software require-

ments specification for the EP system, in the manner of (REQ).
The contractor was able to apply the SCR methods in a straightfor-
ward manner, to modify them independently and sensibly, and to
integrate them usefully with the contractor's own proprietary
techniques. Software engineers at all skill levels were involved
in this effort and most had no trouble with the SCR methods.

G-39

L.

O

Although the EP requirements were completed, the Navy decided

that the backup system was not needed aboard the submarine, so

funding for the EP system was canceled. Thus, there has been no
chance to use these requirements as a basis for further system
development.

G

G-40

References

(REQ) Heninger, K.L., PaLker, R.A., Parnas, D.L., Shore,

J.E.,; Software Requirements for the A7E Aircraft; NRL Memorandum!•i •Report 3876; November 1979.

I G4

G-

-~~ý,7 77,--- - .----

Case History: Naval Weapons Center A-72 Program

I. ADplication

The responsibility for maintaining and updating the software
for the A-7E aircraft rests with the Naval Weapons Center in
China Lake, California. The Operational Flight Program (OFP) in
the aircraft resides in a small and rather archaic embedded computer.
The program controls instruments and indicators, and receives
information from sensors and other equipment. Navigation
instruments include an inertial measurement set, Doppler radar,
and atmospheric sensors. Navigation information is displayed on
a digital panel, or by moving a projected color map of the
overflown terrain. Attack equipment includes a forward-looking
radar, forward-looking infrared, and a repertoire of almost 100
kinds of weapons. Attack information is shown on a head-up
display. Target location is communicated to the program by
keyboard entry, or by "pointing" to the location on one of the
displays (e.g., overlaying the location with a cursor on the
radar screen). The program then computes when to release a
chosen weapon, provides flying cues to the pilot, and if desired
will actually launch the weapon at the most favorable time. The
release calculations are quite complex, involving the flight and
ballistic characteristics of the particular weapon being used. -, -

The A-7E OFP is a program that meets very complex require-
ments, running under very tight time and space constraints.
Even so, it provides capability not found in other aircraft
systems. For instance, the A-6 lacks a map display; nor does it
offer the attack mode most preferred by pilots, in which the
impact point of a weapon is continuously computed. Further, the
A-7E OFP has the reputation of being one of the most reliable
and defect-free programs in the Navy.

2. Technology Adopted

An NRL-style requirements document haa been written for the

G-42

[i>I1

version of OFP known as NWC-4. That document has also been updated

to capture the requirements of the first (of four) incremental
changes that will become NWC-5. Further, the NRL requirements
document that specified the requirements for NWC-2 has been
modified and used as a baseline to derive the software
validation procedures for NWC-2F,WC-4, WAF-2 (for A-7s in the
Hellenic Air Force of Greece), and NWC-5.

3. Row Technoo,,, Was" Transferred

Since the demonstration vehicle for NRL's Software Cost
Reduction project is the A-7E flight software, NRL porsonnel

have had extensive contact with the NWC A-7 staff. SCR's first
product was a complete requirements specification of NWC-2.

- rSince the A-7 software requirements had never before been

written down in one document, copies of the NRL document soon
began appearing on desks at NWC. By the time that NWC-4 was on

the horizon (eight versions later), the NRL document was trusted

I. and understood well enough to be accepted.

4. obstacles to Transfer

There was some concern that the NRL-style document might
L not satisfy the applicable MIL standard. However, NWC took the

approach that the document clearly satisfied the intent, if not
the organizational letter, of the standard.

5. Aids to Transfer

The management of the A-7 project office at NWC was open to

new ideas and trusted the people in the software branch when
- _ they said that this would help them to turn out a better

product. The previous lack of such a document was also a key
factor. Finally, the fact that creating such a document would
be a matter of updating the NRL document (rather than starting

from scratch) certainly didn't hurt.

G-43

! '_i ! - , * ~ -- t-

The NWC-4 document was produced for under $200,000, which
*includes data entry, as well as labor cost during the learning
*phase of the project. The A-7 also has "better validation procedures

* than we've ever had before" in the opinion of a member of the
NWC staff, who also thinks that A-7 Ohas the most complete (software)
documentation of any aircraft project at NWC."

They also probably have the most maintainable. Previously,
software requirements were scattered through~out several documents,?
including a NATOPS manual for the aircraft ("NATOPSO),y a tactical
supplement to the HATOPS ("TACO), and a maintenance instruction

* manual ("MIMS") for shipboard maintenance of the aircraft. Below
* is a table showing the cost (in dollars and pages) of changing

these manuals for two recent software modifications. Note the
contrast with NWC's software requirements document ("SRD").

NATOPS TAC M4IMS SRD

*Change A $3300 $10500 $17500 $400
12 pages 36 pages 64 pages 2 pages

*Change B $3300 $110000 $309000 $400

12 pages 37pages 1131 pages 2 pages

*Another estimate of maintainability is that NWC is planning to
* devote only one person working half-time for one year to change

the NWC-4 requirements to NWC-5.

G-44

*. ** , , i, • , • . , • •• • , • . • - , . • . ; r -- , -- • • • . • , - : , . , ,. ,*- , • - , . , = • - • . I •

Can * r, stry Ha Wepn Cete A- Prora

The -63 ntrder ircrft s a arrer-bsed wo-an mdiu

Cam Hritongya Navatle Wesonsar Cen ureert d-P ocramet

Mtheaio toE ntuser aiheaf is aetcarrier-basepovdd pwo-manreium
attack aircrat Its opereneraioAl7 flightne prograedmuchPi venoryge

--.mentarnd natrfred towhat ofn the fairly inle mis lonbsizeeandrt

th. technology. A-6mnaeetoedstte oe osrvtv

For thes inlnexto version fof the more troftware, styl ChofLk

isawriing anN yesoftware. IfteA7epreqireents hdnocumeent.osa

4. HObstaclestovWa Transfer re

oTivatiopltousethell asined mthooog wast preovidentdd prmail
byate aW fu-l experstnience.f t-? personnel proidd muhencpodurae-

miten and palerforme wat cang bie. fair calld atlbbin efforto

* torngetn the appropriateyAi6 peopleetorecognizertheybenefitsno

tetcnlg.A-6 management tea.Mngmnds reutonbe mordepconservmatie

hranditioa seemsclears thatdre the- effort. wudnThave beenlo

cethen peopleninitiallyecassaigne todwite the mehdocmn did no

tarnshiungth menthacodologyrsute in teyeofan aoulready-ralelutn

starts. Finally, the A-6 management became concerned when

G-4 5

prolonged discussions about the requirements became commonplace.
However, this was turned into an advantage when it was pointed

out that the discussions were revolving about what the A-6

software requirements actually were, rather than about how to
use the NRL technique to specify them. We were able to point
out that because of the methodology, ambiguous requirements were
being discovered very early in the development process, at a

point when they were the least expensive to resolve.

5. Aid. to Transfer

The willingness of both NRL and NWC A-7 personnel to

*i consult and review played a major role. The clear superiority
of the methodology over anything previously used was also a key
factor.

6. Results

The document is still in preparation. NRL personnel have _.

attended briefings and provided reviews, and the document
"* appears to be well urnder way on a successful track. The A-6

management appears committed to the methodology, and have
contracted with Grumman Aerospace Corporation to write a manual
describing how to produce an NRL-style requirements document. -

G-46

- ,L- - -

Came History: USAF A-7D
,gn •.. .ai~

The USAF also flies the A-7 aircraftj its program is very
similar to the Navy software, except that the class of available
weapons is different, and it does not include facilities for
shipboard inertial alignment. The computer used is the same as
for the Navy A-7.

2. Technology Adopted

An NL-style requirements document has been written for the
USAF A-7D software. In addition to completely and accurately
describing Uthe current programt the document is used to specify
changes to the sofNavy o waexcp hat-thite is specified
by changing the appropriate page or pages in the software require-

,-epments document, and then presenting those new pages to the contractor
with the instructions to make the program meet those new requirements.

3. Now Technology Was Transferred

As might be expected, the USAF A-7 office and the NWC A-7
office maintain close contact. Many changes to one program are
also desirable to the other (e.g., the introduction of a more

* accurate ballistic algorithm). Thus, when NRL began working
with NWCi we als r became acquainted-with the USAF A-7 personnel.
The major vehicle of technology transfer in this case was an
intensive two-week course in software engineering principles
that NRL presents from time to time. The course was attended by --

key USAF A-7 personnel who recognized the potential benefits of
the methiodology to their application. They produced the A-7D
software requirements document entirely on their own initiative.

4. Obstacles to Transfer

None.

G-4 7

• LIm
*1"

5. Aids to Transfer

The person in charge of the A-7D software is an individual

involved in the technical as well as management issues of his

project. Thus, he could immediately recognize the advantages of

the methodology, and was in a position to choose the course of S

his project. And as with NWC, he only had to update the NRL

document, rather than start from scratch.

6. Results

The Air Force has, for the first time, a document which

completely describes the software for their A-7 aircraft. Using

the requirements to specify changes also gives them a powerful -

contractual tool. Because the requirements (and hence the software

changes) are specified completely and unambiguously, contractor

performance can be stringently tested.

G-48

0

5- -

G-48

t

Case Historys Requirments Specification at Tektronix Corp.

An applications group at Tektronix Corp. is currently using
techniques developed by the SCR project to develop the software

for a new graphics input product (details of the application are

a trade secret at this time). The application is based on dual

microprocessors (Motorola 68000) operating concurrently. The

F: application is control intensive and interrupt driven. Besides

responding to external interrupts and controlling devices
(motors), the system software is responsible for data

acquisition and computations on the data.

S2. Technology Adopted -

The Tektronix group has adopted the system requirements

methodology developed by the SCR project. With the addition of

some data flow techniques, the methodology has been used to

write all of the system requirements. In addition, the SCR

supported design techniques of modularity, information hiding
and a "uses" hierarchy have been applied in the design and

development of the system software.

3. How Technology Was Transferred

The use of the SCR Requirements methodology has been

adopted by the Tektronix team at the instigation of the project
supervisor. The supervisor became interested in the SCR

,. methodology following a presentation by one of the SCR staff at

the Software Reliability Conference in Boston (1982).
* Subsequently, he attended a week long lecture course given by

"Dr. Parnas and has received all of the SCR publications. The

supervisor has maintained contact with the SCR project through
Dr. Parnas who has made himself available to answer questions

*. concerning the methodology.

LThe project supervisor reports that although he was given

G-49

.................... . S S * -

S - S- S. S ." ."• • • - • • , . " ,. '. , • . . ." "• • • • - . .• . . .•=.

primary responsibility for choosing his own development

methodology# he has found the SCR Requirements document and

other NRL publications useful in justifying his approach to his

supervisors and team personnel. He also reports that most of
his programming team (four out of five) have received the new

methodology enthusiastically and had little trouble using the

SCR techniques.

4. Obstacles to Transfer

None.

5. Aids to Transfer

Availability of published NRL documents in the literature. -

6. Results

At this time, all of the system requirements have been

written using the SCR requirements methodology. The system has-

been designed- and written using the aforementioned techniques of
modularity and infov-mation hiding, and the system is currently

* ~* being tested and debugged. The team supervisor reports that the

use of the SCR methodology has resulted in a requirements

document of high quality and that the document has proven

extremely useful throughout subsequent phases of the

development. In addition, the team has found the underlying

- principles supported by the SCR methodology (e.g., information

hiding) useful throughout the design phase for making crucial

design decisions.

G-50

Case History: lRP for New Class VI Computer Application5 ,1. ADDlieat ion

NRL has released an RFP for a new class VI computer system.
This system will comprise a high power vector cpu as a back-end
and a front-end processor pzoviding functions such as communica-

tions, local editing, and mass storage. The function of

interest in this report is communications, specifically

communications with the DoD Internet (Arpanet and Milnet) and

the Lab's TCP/IP based local network.

" .* The problem was how to specify the interface to the net-

works. The interface to Milnet could be completely specified,

Sbecause the hardware is in place. But it would be desirable to

design the system so that changing the Milnet hardware would not
cause major changes in the rest of the system. The connection
to the NRL local network couldn't be completely specified,
because at the time of the RFP it wasn't known exactly what

hardware would be used. It was known that it would use the DoD
TCP/IP protocols. The solution to both of these problems was to

design an abstract interface for the network interface device.

2. Technoloqy Adopted

An abstract interface for two modules was included in the
RFP. One abstract interface was for the data link device
module. This module is to contain the device dependent details
of the particular network interface involved. For example, one

module might know details of the BBN C/30 IMP, another might
know details of an Ethernet controller. The other abstract :

* ointerface is for an address mapping module. This is required

to map from Internet addresses to the addresses on a particular
.* physical network. The form of addresses on a particular network

.: is a characteristic of that network, and should not be known
throughout the system. Outside of this module, only Internet

Laddresses are used. These interfaces are described in detail by A..

I" "G-51

L.

• °. . . , •° - .- , , , . .• • • . . . • . , • • , , • • • , . • - S0 . - - . - . , - -.-.. . . -

reference (1), which became a part of the RFP for the computer

system.

:* '3. TeMhnolouy Was Transferred

SCR personnel participate in a committee that is designing

a Lab wide network at NRL. During a committee meeting (also ow,

attended by people from the class VI computer RFP group) mention

was made of the difficulty is specifying the network hardware/
* . software interface in the RFP. During a later review of the

RFP, an abstract interface to describe the required interfaces
"was suggested. SCR personnel designed the interfaces and prepared
a Technical Memorandum to be included in the RFP. This involved

about 0.5 man month.

4. Obstacles to Transfer

Some people questioned whether such a thing could be included

in an RFP, mainly because it had never been done before. The sow

committee probably didn't qufte understand what was being attempted. --

5. Aids to Transfer

The top-level management in this case is familiar with the

technology and brought pressure to bear on the committee to accept

the ideas.

6. Results

The abstract interfaces were included in the official RFP.
They will force the bidders to modularize the network imple-
mentation in such a way that network hardware changes should not
be hard to handle. They also provided a way to specify all that

was known at the time the RIP was written concerning the required

network interconnections.

G- 52

ReferencesS0

1l) An Abstract Interface Specification for the Data Link Device
Module and the Address Mapping Module for a Network Using
the DoD Internet Protocols, NRL Tech Memo 7590-233, 19 Sept.
1983.

* ..

r°

L

G-53

Case History: URL Architecture Research Facility

! 1. MLplication

NRL designed and implemented a large FORTRAN program called
the Architecture Research Facility (ARF). ARF is a program that
when given a formal description of a computer instruction set

architecture provides simulation of that architecture. The system
was used in support of the joint Army/Navy Military Computer

Family (MCF) project.

2. Technoloqy Adopted

The primary goal of the ARF designers was to produce a working

simulator; certain software engineering principles were employed
to facilitate this. The ARF was to be developed using the
family approach to software development. The information hiding
principle was to be applied to conceal design decisions that
were expected to change during the lifetime of the ARP. Several
debugging aids were designed into the system to make development
easier. These included:

- A method for detecting errors involving improper
access to table entries.

- A consistint execution-time error reporting scheme for
table in erface functions that preserved the name of
the routine in which the error occurred and reported a
code associated with the error.
A mechanism for inserting, and turning on and off,
debugging code through the use of a compile-time pre-
processor.

3. How Technoloav Was Transferred

Most of the technology was spawned from within, since all
work was done at NRL. At the time, most of the software

engineering principles had appeared in the literature, and Dr.
David Parnas was a consultant to NRL.

G-54

7; ~~'**- - - - - - - --7--- - -ý

1*

4. Obstacles to Transfer

None.

5. Aids to Transfer

None.
mS

6. Results

Although ARF was primarily a research project, it was com-

"pleted and it worked well. It wes extensively used by NRL to
develop a formal description of one of the candidate MCF architec-

. tures. ARP is remembered at NRL as the project that laid the
groundwork for the Software Cost Reduction project, because it

was one of the first systems to apply certain software engineering ,
principles to a real problem. NRL's first experience with such

*:r principles came from ARF.

LWO

; ' G-55

References

(1) Evaluating Software Development by Error Analysis: The
Data From the Architecture Research Facilityl David M. Weiss,
NRL Report 8268, December 22, 1978;

(2) Architecture Research Facility: An Experiment in Software
Engineering; Honey S. Elovitz, NRL Report 8346, December
31, 1979.

G- 5

..

G-5-

----~

-- - - -•- - .-] "

z -77- -- -%ý,ý--7 '- -iýTJ'7 17T' .7"7` T7--';97i w - -Z- 7-- ~ ~ 5

Cas. History:' Advanced Harrowband Digital Voice Terminal

(ANDVT)

1. AR~S~E

The Advanced Narrowband Digital Voice Terminal (ANDVT) is a

TRI-TAC program to provide secure voice and secure data

S communication facilities to users with only narrowband

(App.4oximately 3KHz) channel capability. The first equipment

* r.developed under the program is a tactical terminal (TACTERM)
designed for shipboard, airborne, shelter, and vehicle

applications over HF radio, fieldwirep troposcatter, and Line of

Sight (LOS) communication circuits. The TACTERM development has

beenx a joint effort of the Naval Electronic Systems Command

(NAVELEX) and the National Security Agency (NSA). The Naval

P~esearch Laboratory (NRL) has served as the NAVELEX technical

agent and has performed the system engineering function for the

development.

The schedule for the ANDVT TACTERM development is as
follows:

8 Milestone Date (s)

Conceptual Phase Sep 76 - Oct 78

Feasibility Phase Oct 78 - Sep 80

Full-4Scale Engineering Development Phase Oct 80 -Mar 84

Initial Production Phase Jan 84

Initial, Operational Capability Oct 87

2. Technology Adopted

The major technology applied to the TACTERM development was

that identified in !41L-STD-1679# which was being written during

planning for the TACTERM Feasibility Phase. MIL-STD-1679 work

and data requirements were written into the Feasibility Phase

L Request For Proposal.

G-57

_- -i .- ,

3. Mg. Teobnology Was Tranasered,

Because of the newness of the MZIL-STD-1679 methodology, the

NRL system engineering team sought help from the Computer

Science and Systems Branch at NRL and obtained a limited amount
of consulting ,

assistance from two software engineers. Nothing that may be

m called truly innovative software development technology was used

in the TACTERM developmentl superior software documentation was

not produced. The major contribution of the software consultants
was that software issues were raised early on in the development

" and the contractor was forced to deal with them. For example,
the engineers (1) evaluated proposals for the Feasibility Phase

- "contracts; (2) forced comprehensive Software Development Plans;
(3) caused a lot of attention to be paid to Program Performance
Specifications and, as a result, forced beneficial communication

among the contractor's system engineers and software engineers;
and (4) generally caused contractor personnel to pay careful
attention to delivering quality software documentation. 4

4. Obstacles to Transfer

None.

5. Aids to Transfer

None.

6. Results •

The NRL system engineering team has observed that software

problems have been few and those that have occurred have been

relatively straightforward to correct. The conclusion is that
the technology when supported by part-time consulting can reap
benefits. If, however, truly innovative development approaches

or products are desired, then the approaches and products must

be defined and pursued early on.

G-58

Cane History: Training Integration System

1. Ap.iotionL

The T-45TS is to be the Navy's replacement for the undergrad-

uate jet flight training system. Overall, the new system will

include an aircraft, simulators, and a Training Integration System

* (TIS). The TIS subsystem is envisioned as a large software system

that will be used in such diverse aspects of training management

as personnel records, financial information, and, of major importance,

daily and long term scheduling of training resources. Critical

training resources such as airplanes, simulators, and instructors

Vi must be matched up with students in the most efficient manner

that will ensure timely graduation. Thus, while most of the TIS

functions appear to be typical management-oriented database applica-

tions, the addition of the scheduling problem and the requirement

for near-real-time response to changes in resource availability

make the system more difficult to specify.

Based on a competition in which several proposals were entered,

the Navy selected the Douglas Aircraft Company as the prime contractor

for the T-45TS. The simulators and most aspects of the aircraft
are to be subcontracted, but Douglas will implement the TIS in-
house. ,

2. Technology Adopted

"NRL personnel consulted for NAVAIR on the TIS subsystem
specification. The project had not reached the point where any ___

but the most general requirements could be ascertained. It was
therefore inappropriate to develop a specification with the sort
of detail found in the model requirements document (REQ). The
main effect of NRL assistance was the adoption of a more systematic
classification of system functions (although the list was still
not very detailed) and the inclusion of requirements that, it

was hoped, would have the effect of making the resulting system

C easier to change.

G-59

- . t-- --.- V -, . A. . L t.tJ%....-S

3. LoW IeqaBholoay Was Tranufertre4

NRL personnel were engaged to consult on the development of

the TIS specification by the NAVAIR command responsible for the
T-45TS. Consulting was a part-time assignment for two people.

4. Obstacles to Transfer

Initial meetings attended by NtL personnel were Navy-only

and focussed on identification of system requirements and approaches

to the system specification. At first, the Navy project managers

"showed tendencies to write a "kitchen sink' specification (e.g.,
"The system will do everything necessary to support training.,)

,u and to assume that the contractor could be trusted to make every-

thing right. However, NRL personnel explained why this was inad-

visable, and gradually the situation changed.

Later meetings included contractor representatives and focussed
on ironing out problems in the system specification. Most of

this time was spent over contractual issues having nothing to do 4
with software engineering. When software matters were addressed,
the *old guard" attitudes and the lack of technical expertise of
the contractor personnel made these discussions difficult. The
difficulty of getting the contractor to understand ease of change
Sas a criterion for the TIS software can best be illustrated by a
remark made by one of the contractor's management representatives:
"If you want a change in the system, no problem: just pay us
and we'll change it." The contractor's personnel were, for the

most part, entrenched in the familiar way of arranging such con-
tracts, and when contractor personnel did show an understanding

of the NRL approach, they were invariably lower-level employees
without power to influence things.

5. Aids to Transfer

The steadfast support of the NAVAIR project managers enabled

the NRL people to weather the opposition of personnel from other .

G-60

* - --- *--" *--"

Navy agencies and eventually to gain their agreement.

6.

"The system specification for the TIS is more detailed and
better organized than it would have been, but it still offers

_ ;too little detail on which to base contract pricing, and it does
not provide a detailed software performance specification.

G-6-

,ii iL

i lG-i61

:---"i :

II ý `7

References

(REQ) Heningerp K.L.p Parker# R.A., Parnasp D.L, Shore, J.81
Software Requirements for the A-7E

G-62

Came Historys Collection System (CS)1. Ali t-o

The Collection System (CS) is a family of systems each of

which has to track and command, as well as gather and

preprocess, data from satellites. It replaces an existing

family of systems with similar, but outdated, capabilities. The
CS developmental life cycle (i.e., the time from initial concept

.V to deployment of the final site) covers approximately eight
years, the last five years of which might be called a full-scale
engineering development (FSED) phase. Some FSED-phase
milestones are as follows:

I Milestone Month

System Requirements Review 5
System Design Review 14
Preliminary Design Review 21
Critical Design Review 28
Production Release 39

Development Test and Evaluation 46
All sites operational 61

The CS development is a multimillion dollar effort. During
the FSED phase, the manpower effort averages 200 man years per

year. Because the project is classified, additional information
is not available.

"2. Technoloqy Adopted

New technologies are being applied in the CS development at

"the instigation of the project manager, who was introduced to
many of the technologies in two software engineering courses
offered by the Computer Science and Systems Branch at NRL. The

L new acquisition-management technology being applied in the CS

G-63

. ,. - - --- -

.'- " • + + , • + + - , ' • . • + .' : _ • + :+ '+ : - - , : - + : ++: " :+: . :: •: + ., . +: +, + , + • ! -:= . -- - :.+,- -... . . - -.

development follows current MIL-STDs applicable to hardware and

software developments. The new engineering technology being-

applied comprises much of what is being applied and refined in

the STARS-funded Software Cost Reduction (SCR) project.

3. How Technoloqy Warn Transferred

Three engineers from the Computer Science and Systems Branch

at NRL (two of whom also work on the SCR project) work part time

on the CS development and provide the primary assistance to

full-time project engineers in applying the new

technologies. There is some consulting with SCR project

personnel on a free-of-charge, as-needed basis. Contracts are

* sometimes issued to acquire expert support for particular

technologies.

*4. Obstacles to Transfer

There are two obstacles to the transfer; they concern

psychological aspects of DoD system developments. First,

* because of the natural human resistance to change, it is

difficult to introduce new technology. The difficulty is not

* limited to contractor personnel; it extends to government

personnel working on the project. (Difficulty with a contractor

may be avoided to some extent by making things clear in the

* Request For Proposal.) Second, because some new technologies

emphasize early project tasks and products, they delay

traditional milestones (e.g., the production of code or-

software). Because of this and because most DoD developments

* are pressed for time and money, the result is that people become

nervous about the undertaking and resist the introduction of the

technology.

S . Aids to Transfer

None.

G-64

6.

The project is still in the early stages. The SCR tech-P

niques are being used by the government and contractor
personnel. Concerning the use of the SCR project's formal

S--techniques for specifying system (specifically software)

requirements, it appears

that people feel the need to first document the results of system

analysis using traditional English or graphical approaches. They
then find it easier to translate these informal specifications

into the formal SCR software requirements document than to generate S.

the formal requirements from scratch. This agrees with the findings
of the NUSC-funded effort to specify requirements for the Trident's

-- DWS/CS Emergency Preset (EP) Subsystem.

G-65

nmmm ,.....

-- a-

Case History* A Satellite Comunications System

The system will provide a tri-service satellite communica-

tions system. One particular part of the project is to produce
the ground terminal and the associated communication functions
--- antenna controls, modems, multiplexers, encryption devices,

etc. The terminal design must be applicable for the communication

functions on surface ships, submarines, fixed and mobile land

* sites, and aircraft. The software for the system represents a
large initial Investment and will require a large investment in

maintenance over the system life. Two companies were awarded

S. .contracts to build competing prototypes.

2. Technology Adopted

Software engineers from NRL were asked by the Navy project

manager to consult on the software development. This was done
after the contracts had been awarded to the two companies, after "

. both companies had already decided on their software design and
coding practices, and after a third company had already been
contracted to provide software engineering advice to the project
manager.

NRL found that both companies' developments had the typical
"set of software problems. Requirements were being written by
one group at the same time that the software development was
being done independently by another group. The requirements

* were being defined in terms of implementations making it difficult,
if not impossible, for maintainers to distinguish real requirements
from mere implementation decisions. Facts describing the interfaces

with external systems (the satellite, networks, modems, etc.)
- were not isolated from each other or from the behavioral requirements,
nI so that changes in the external systems and protocols could affect

most of the software modules. Software design reviews for the

military project managers were held well after many crucial decisions

G-66

* -1 I *I* .

. .. ,.. .-

"iii
-L

--were embedded in the system design and their correction would
have added months to the schedule.

3. How Technology Was Transferred

Although NRL personnel worked with the contractors and the
i li• Navy project managers for many months, there was no direct technology

transfer.

4. Obstacles to Transfer

The major obstacle to technology transfer was that the Navy
had committed insufficient resources to the management of the
project. While the total being spent on software development by,
the two contractors was in the range of $5M-$10M, the Navy had

S:.only one engineer monitoring the software development, in
addition to his other responsibilities on the project. This
resulted in a situation in which those who were advocating the

]p iuse of a strict software engineering discipline were not in a

position to enforce its use.
, .The Navy gave each of the contractors the resources to

field a management team that had a considerable edge in
debating issues with the Navy's management team. As in all
such cases, even though the Government and the contractors had
many identical goals, there were instances where some goals were
different. Post-deployment maintenance is a good example. It
is to the contractor's advantage to design and implement the
system so that he has the only people capable of maintaining the
fielded system. He has no incentive for making the system easy
to maintain by the Government or by another contractor.

The language in the current military standards tends to
mandate form and organization rather than contents and quality.
Further, in many instances, :. -Th 1679 encourages presenting

L the requirements in terms o- 4lJumentation.

*: -- 67

The software engineering team was not in place before the
contract was awarded. Work on the system design had already
begun without any interactions between the software engineering
team and the developer. Thus, the developer could claim that
the disciplines advocated were not a part of his contract.

The contractor who was already providing advice to the project
manager when NRL's aid was solicited viewed the NRL personnel as
competition. Thus, the project manager, who was already overloaded
trying to resolve conflicts over technical software issues, found
himself arbitrating a three-way debate over software engineering
issues.

The schedule for software design reviews were such that
- ~ many issues were already decided by the contractor before the

review. This resulted in claims that changes dictated by the
Government at the reviews would add costs to the project or cause
delays.

Two concerns of any project manager are that the imposition
of the software engineering controls will increase the development
costs of the system and that the contractor may use the imposition
of the controls as an excuse to increase the development costs
to cover errors he has already made. While the project manager
may have been convinced that the methodologies would reduce the
life-cycle cost of the entire system, the only costs that he is
held responsible for are the current development costs.

5. Aids To Transfer

None

6. Results

There were no direct benefits from the effort. There were
some indirect benefits that resulted form NRL's participation in
design reviews and interactions with the developers, Navy managers,

G-68

C:

and support personnel.*
Conclusions

NRL's experience in transitioning the SCR technology has
proven that the overwhelming factor in determining the success
of a technology transfer effort is the willingness of the responsi-
ble management to try something new, and all project engineers

- are reluctant to accept new, unproven methodologies. Thus, a
difficult but crucial task faced by software engineering practi-

* tioners is that of providing proof that the technology being
developed is useful, practical, and cost-effective. This proof

* -must be presented in a convincing, unquestionable form. The

project engineer must be preaented with demonstrations of working
models -- not promises. Without convincing demonstrations andL

* working models that he can emulate, he will not be willing to
experiment with new concepts and there will be no technology

i transfer.

Given a willingness of management to listen to new ideas,
* the following are ways in which to enhance the chances of transfer

by making the technology as attractive as possible:

Sa. Quantitatively Specify the Benefits Offered by the
Technology. It is purely a management decision whether the cost
of a new technology will outweigh its benefits, but enough informa-
tion must be available so that management can make a reasonable
decision. This must be quantitative data; anecdotes are not
sufficient. For example, we claim that the SCR methodology reduces
the effort required to make changes in software and reduces the

maintenance cost. To prove this, the effort required for software
changes during development is being measured. After the development
is complete, the effort required for a large set of changes to

* the "SCR" A-7 software will be compared with the effort to make
* the same set of changes to the "oldd A-7 software.

b. Provide a HiBh OualitZ Model. Software methodology

G-69

exists in a community of engineers, and engineers work from models.
For example, no one builds a bridge or a house or an airplane
from first principles; rather, a (useally small) set of new idea%)
is incorporated into features from the last bridge or house or
airplane. The last instance serves as a model, transferring
technology (that set of ideas that were new to it) to the new
effort. So it is with software engineering technology transfer.
It is not enough to explain the technology or to write academic
papers that describe it. It must be exemplified in a model.
More than half the projects we know of that have adopted the SCR
methodology have done so without any contact with NRL at all;
They have relied completely on the models published by the project
-- the examples of requirements specification, information-hiding
module interfaces, etc.

c. Reduce the Apparent Risk of the Technoloqy. In addi-
tion to providing the technological models for engineers to emulate,
the worked-out examples provide proof that the technology can
work; this decreases the number of unknowns faced by management
anC, hence, the apparent risk. The apparent risk also decreases
as the number of customers and experience with the technology
increases. Managers have little incentive to try something new,
because there is no penalty for failing to do better than one's
colleagues. However, there is a penalty for failing in an untried
fashion, and so the perceived risk must be made small. The accept- " ,
ance and use of portions of the SCR technology by companies like
Bell Labs, SofTech, Grumman, Bell Northern, Tektronix, and TRW
have helped decrease the apparent risk of the total technology
package.

d. Provide an Ex.! rt Consultant. This is a special case
of reducing the perceived risk, because the manager knows that
when questions arise someone will be there to answer them. An
expert will increase the quality of the model as seen by the
customer, but absolutely cannot supplant the model.

G-70

'* i

These techniques are in order of importance. The project

- ,manager must be convinced that the technology's benefits outweigh

the risks and are worth the costs. If he is not, then the matter

.is closed. i he is convinced, then it is essential to provide
a high quality model for emulation and to provide data and examples

* •to reduce his perceived risk, Providing an expert consultant

helps, but usually is not essential.

G- 71

Hi

Compiler Technology Insertion Networks Study

Richard A. DeKillo-

February 1984

This came study tracks the four technical developments that -

have lead to the current state of engineering practice for

compiler technology (SOP): (1) mathematics, (2) programming
languages, (3) compiler theory, (4) compiler engineering

practice.

The technology insertion 'process shown here only follows

the insertion of lexical analysis and parser generator

technology from its mathematical roots to common practice. The

flow of critical events is shown in Figure 1. The arrows in
Figure 1 indicate events which influenced other developments.

It is assumed that there are downward arrows along each vertical

* track.

A complete analysis of all of compiling would also treat

portability and optimization, culminating in the first
commercial production-quality compiler-compiler.

Technology History - -

-h1937 Mathematics: Turing (41) defines and proves the existence
_foof "universal" machines; these turn out to be

compilers/interpreters for abstract machines and languages.

1938

1939

1940

1941 Mathematics: Church (10) describes the "lambda calculus",
a formal system of computation notation that forms the
basis of the programming language LISP and has a profound
influence on programming language semantics, particularly

" odenotational semantics.

G-72

-rd',. rc 1 r-r rrrin - l U V W ~ 'V 7r rrl, ' "'r

i-'

1942

! 1943 Mathematices: McCullough and Pitts (34) publish a
description of their "neural net" model. Although the
notation and terminology undergo massive changes, the theory
of finite automata stems from this paper.

1944

.i 1945

1946

1947 Mathematics: Post (37) defines "production systems", a
direct predecessor of the Chomsky formalization of grammar. ,

1948

* 1949

1950 Mathematics: Markov (34) publishes a "theory of ..
algorithms" based on a generalized notion of rewriting.
Although similar in spirit to Post's system, Markov
investigates the properties of his model more thoroughly.
This work eventually forms the basis of the theory of
formal grammars as well as the design of a number of

_* programming languages (e.g., SNOBOL (21)).

1951

L° 1952

c1953 -

1954

S..1955

_ 1956 Mathematics: Chomaky (8) defines the basic model of modern
formal language theory and sets out the hierarchy of
languages that includes the regular, context free and
context sensitive languages. Kleene (27) describes the
theory of regular events and invents the "star" notation.

1957 State-of-Practice: Backus (2) describes a very early
Fortran compiler. This is a practical compiler that
translates Fortran to IBM 704 machine language.

1958

L 1959 Mathematics: Rabin and Scott (38) publish their model of

G-73

finite automata and outline the problems which will occupy
researchers for the next decade. The theory of finite -4 .'

automata can be said to begin at this point.

Language Definition: Backus (3) publishes what is probably
the first -- and certainly the most extensive -- ":.
"application of formal language theory to the definition of a
programming language. This notation is adapted by Nauer of
the final Algol 60 report to the DNF notation which becomes
the standard for language definition.

1960 State-of-Practice: Dijkstra (12) and Bauer and Samelson
(5) describe the run-time stack implementation of Algol 60,
solving -- among other things -- the problem of how to
implement block structuring. Although Dijkstra has been
given extensive credit for this idea, at least one member
of Algol committee reports that the run time stack
implementation for block structured constructs was invented
by an unknown Siemens engineer who attended a crucial
meeting of the committee, described the solution, and was
never heard from again.

1961 State of Practice: E.T. Irons is the intellectual father
of automated compiler production. His classic paper (24)
marks the first coherent description of syntax directed
compilation and also contains a description of such a
compiler for Algol 60.

1962 Mathematics: Brooker and Morris (6) publish the first
general solution to the general context free language
parsing problem. Chomsky (9) proves that pushdown
automation recognition characterizes the context free
languages. This is a theoretical demonstration that stack
oriented translation systems are adequate. Kuno and
Oettinger (30) outline the concept of top down parsing.
Although (30) deals with the parsing of natural languages,
"the notion of recursive descent parsing for computer
languages can be traced to this paper.

State-of-Practice: Paul (36) proposes a processing
mechanism for Algol compilers that brings the efficient '
compilation of Algol within the realizable state of

-" practice. The particular technique described is the
direct, forerunner of bounded context parsing.

1963 Language Definition: Under the editorship of Nauerp the
revised report on Algol appears in print. This is the most
complete attempt to date to completely and unambiguously

-" define the syntax and semantics of a programming language.
In spite of many shortcomings and errors, this report and
the notation contained therein is the standard by which all

G-741iiP - "

other definitions are judged until the early 1970's.

Theory of Compilingi Floyd's paper (16)'formalizes the
concept of operator precedence and places it in the context
of formal language theory. Prior to this paper operator
precedence had been used intuitively in compiler design,
but attempts to justify its use were usually muddled and
incorrect. In addition, Nickel, Paul, Bauer and Samuelson
(15), publish an explicit definition of bounded context

-"I parsing algorithms. It is also explicit in this paper that
automated parser production is an achievable goal.

State-of-Practices Brooker and Morris (7) announce the
first system that produces parsers automatically. Their

S .system uses recursive descent parsing.

* 1964 Mathematics: Domolki (13) derives the first practical
algorithm for grammar-driven parsing of arbitrary context
free languages.

C -Language Definition: Floyd's survey (17) of the
application of formal techniques to language definition and
compiler design appears. Since there are virtually no
textbooks in this area, Floyd's paper is the main vehicle
for disseminating the rapidly improving state-of-the-art to
the engineering community. Many of the algorithms
discussed by Floyd are inserted into widespread practice on
the strength of this exposition.

"Theory of Compiling: Floyd (18) publishes the most
general, correct definition of bounded context grammars.

i State-of-Practice: Randell and Russell publish a complete
description of an Algol 60 compiler. It is possible at
this point for a competent programmer to implement a
working Algol compiler using only the technology described.

1965 Mathematics: Earley announces his optimal solution to the
general context free parsing problem (14). This table
driven algorithm is suitable for inclusion in compilers and
is used in one of the first Ada compilers. In a paper that
generalizes all previous attempts to characterize

.,situations in which languages can be determininstically
parsed bottom up, Knuth (28) defines the class of LR(k)
grammars: those that can be deterministically parsed
bottom-up, left-to-right, using at most k symbols
lookahead. Hereafter, all serious bottom-up parsers
concentrate on LR(k) parsing for small values of k.

L 1966 Mathematics: Ginsbert (20) publishes the first textbook to

G-75

II • I

! L'_, • •
i mg•-,' •'"
i o f., ',
! -" [.., , :,.

i l,.L;:i systematically treat the theory of context free languages. :.
l li• This marks the beginning of an explosive interest An the •. =
;;;= subject and its insertion into standard graduate curricula, ., :
I IIL , ...:::Lv Theory of Compilings Wirth and Weber publish a definition ":•
I IlL, .'
,,,t... of the Algol-like language EULRR (42). Part i of this paper .': •..III,:F:! is notable for its introduction of "simple" precedence '
, •11 relations, a concept which significantly reduces the amount i'_
I III

... _ of effort to create and execute parsers. Variations of -"

to immediate use•

i•!! --l!!i:!• 1967 Language Definition: Galler and PeriLs (19) Invent a '.: .i.
•', _",',• notation for syntactic and semantic exteneibility for ""!" "-

;•, .,,_i Algol-like languages. Although the notation Is ,,,
.•i -nnr subsequently discarded as too cumbersome, such basic .•
:In SUnL' notions as encapsulation and separate compilation owe their ,i
! I n!!!
•n ,n.•' roots to this paper. Standish's thesis (40) integrates

• • set of coherent design principles for exteneibility and ,• ._
o.•_= •_=• data definition• Modern semantic treatments of types
:iii iiir" appear here in a primitive form•
"•llI Ill l'.', /'1 ,!111 III'i LLlk) granunars, providing the top-down analog of the LR(k)1968 Mathematics: Lewis and Stearns (32) define the class of .•. ,.

S• ,Jiiiiii•,e, ,,--'• parslng• Hereafter, virtually all recurslve descent ... •-•i:•"
Sparsing algorithms concentrate on the "no backup" case,

,•,_.,,,i LL(1) Knuth (29) defines a scheme for attaching sematlcs
,,_,S.,_•.,L•:• •.]lHll- to context free productions. This Is the first use of ."'"•--•--i--•i'•" • "attribute" grammars and allows the automation of semantics]:•':. ::•'

i:•iiii, production during compilation ,. '
,.iBMs�re.- •

,,or

!imm State-of-Practlce. The structure of the algol W compiler -- •;
::=•:• Is published (4)• Of particular significance Is the • i.z

• .ssaai:o appearance of simple precedence parsing In a "production"
i. gnnmm ... •i•.i•.=" quality compiler. The automatic production of lexical ."i :
• •.'i analyzers is brought within the state of practice with the •

S....... . announcement by Johnson, Porter, Ackley, and Ross (26) of
II II Re l l IIL.•llI!!h the development of AED RWORD, a system that accepts regular

expressions and produces flnite-state accepto•s. This
,_-:___-__-•.,. system is used in several compilers as the lexical " .•.

S........ . analyzer :'
, wmm!!!m , • •

I I I I I I I 1969 Mathematics: Hopcroft and Ullman (23) publish their
lie lima" "Theory of Formal Languages and their Relation to Automata"

S• _•_•_• which for over a decade is the standard text and reference •-
• us 1'I., in formal language theory. •!i:
--_=I ; _--='. z-,

.II I I
- II I I•i-•_i !_•i Language Definition. In the ten years since the appearance
--•! l m'• ".,

- -- • • •

• I I I-II, I I••- .' •,"i G-76m'"

]i i!!
!i iE•

•Jg ! L-.j a. ! L•,
.•,, :,-.•

t,.'• • :': ' ' " "" " •* " "" • '-""" '" "" - " " ' : " " " ' ' -•'- " " •:.:I•L• •: '

.i!!.

"of the first formal syntactic definition of a programming
language, there has been little progress In semantic
definition. In (32), Lucas and Walk apply an operational'
semantics developed by IBM Research in Vienna to the
definition of the Programming Language PL/I.

1970 Mathematics: Scott (39) describes a method for giving a
consistent semantics to programming language constructs.
This is the starting point for the "denotational semantics"

.i "of programming languages.

* , 1971 Mathematics: DeRemer (11) defines the "simple" LR(k)
grammars. Most bottom up parsing schemes are subsequentlyoriented to this special subcase of the LR(k) grammars.
Parsers for LR(k) grammars are especially suitable for

S. automated production.

1972 Mathematics: Heck, and Ullman (22) publish the basis of
flow graph reducilibility theory. This paper form is the
foundation for virtually all efficient optimization schemes
that used reducibility as the primary operation.

1973 Theory of Compiling: With the appearance of the two volume
textbook of Aho and Ullman (1), the broad outlines of the

S..theory of compiling are understood and can be communicated
to any graduate student in software engineering.

1974

1975 State-of-Practice: Lesk describes the LEX tool (31). LEX
is a regular expression based lexical analyzer generator
that is included in the standard release of Berkely
Unix(tm). Almost simultaneously, Johnson (25) announces
the inclusion of an LR(l) bottom-up parser generator called
YACC in Unix. With a commercial distribution of an
automated lexical analyzer and parser generator, this
portion of compiler production is completely automated.

I II 1 G-77

YEAR Mathemaca ticsge Der. C iler Theory Practice

193?z (41L)

1938
1939
1940
1941
19a2
1943

1945
1948
1947 (37)
1948
1949 -

1950
* ~1951 I

1952
1953
1954

* ~1955

195o (8), -"

1957()

1959 (38)

1960 (12) --

1961 (.,
1962 (24)
1963 (6

1964 (174*

:! ~ ~1967 I,,
1968
1969 - (26)

./•I ;"1970

}::-. 1971 C L - .'

1972
1973
1974 2*
1975 (31)*

F Figure 1. The Insertion Netvork for Commerclal Compiler-Compiler (*)

G-78

References

(1) A. Aho and J.D. Ullman, "The Theory of Parsing, Translation W
and Compiling, (2 Volumes)," 1972-3, Prentice-Hall,
Englewood Cliffs, New Jersey.

(2) J.W. Backus, et. al., "The Fortran Automatic Coding
System", Proceedings of the Western Joint Computer
Conference, 1957, 188-198.

(3) J.W. Backus, "The Syntax and Semantics of the Proposed
Algebraic Language of the Zurich ACM-GAMM Conference,"
Proceedings of an International Conference on Information
Processsing, UNESCO, 1959, 125-132.

(4) H.Bauer, S. Becker, and S. Graham, "ALGOL W
Implementation", 1968, Technical Report, CS-90, Stanford
University, Department of Computer Science, Stanford,
California.

r.(5) H. Bauer and K. Samelson, "Sequential Formula Translation,"
communications of the ACM, 1960, v.2, 76-83.

(6) R. Brooker and D. Morris, "A General Translation Program
for Pharase Structure Languages," Journal of the ACM, 1962,
v.9, 1-10.

(7) R. Brooker and D. Morris, "The Compiler-Compiler," Annual
Review in Automatic Programming, 1963, v. 3, 229-275.

(8) N. Chomsky "Three Models for the Description of Language,"
IEEE Transactions on Information Theory, 1956, V.2, 113-

* 124.

(9) N. Chomksy "Context Free Grammars and Pushdown Storage,"
. Quarterly Progress Report Number 65, 1962, Research

Laboratory of Electronics, Massachussets Institute of
Technology, Cambridge, Massachusetts.

(10) A. Church, "The Caluli of Lambda Conversion," Annual of
Mathematics Studies, v.6, 1941, Princeton University Press,
Princceton, N.J.

(11) F.L. DeRemar, "Simple LR(k) Grammars," Communications of
the ACM, 1971, v. 14, 453-460. 8-

(12) E.W. Dijkstra, "Recursive Programming," Numerische
Mathematik, 1960, v.2, 312-318.

(13) B.Domolki, "An Algorithm for Syntactic Analysis,"
Computational Linguist, 1964, v.3, 29-46.

G-G79

. (14) J. Earley, "Generating a Recognizer for a BNF Grammar,"
"Carnegie Institute of Technology, Technical Report, 1965, ,.
Pittsburgh, Pennsylvania, June, 1965.

(15) J. Eickel, M. Paul, F. Bauer, and K. Samuelson, "A Syntax
Controlled Generator of Formal Language Processors,"
Communications of the ACM, 1963, v.6, 451-455.

(16) R.W. Floyd, "Syntactic Analysis and Operator Precedence,"
Journal of the ACM, 1963, v.10, 316-333.

(17) R. Floyd, "The Synax of Programming languages -- A Survey,"IEEE Transactions on electronic Computers, 1964, v.EC-13,
I 346-353.

, (18) R. Floyd, "Bounded Context Syntax Analysis," Communications
of the ACM, 1964, v. 7, 62-67.

(19) B.A. Galler and A.J. Perlis, "A Proposal for Definitions in
ALGOL," Communications of the ACM, 1967, v.10, 204-219.

*(20) S. Ginsberg, "The Mathematical Theory of Context FreeLanguages," McGraw-Hill Book Company, 1966, New York.

(21) R.E. Griswold, J.F. Poage, and I.P. Polanski, "The SNOBOL 4
Programing Language," Second Edition, 1971, Prentice-Hall,
Englewood Cliffs, N.J.

-

(22) M.S. Hecht, and J.D. Ullman, "Flow Graph Reducibility",
"Siam Journal of Computing, 1972, v.1, 199-202.

il(23) J. Hopcroft and J.D. Ullman, "Formal Languages and Their
Relation to Automata," 1969, Addison-Wesley, New York. 2

"(24) E.T. Irons "A Syntax Directed Compiler for Algol 60,,"
Communications of the ACM, 1960, v.4. 51-55.

(25) S.C. Johnson, "YACC - Yet Another Compiler Compiler",
computer Science Technical Report 32, 1975, Bell TelephoneLaboratories, Murray Hill, New Jersey

(26) W.L. Johnson, J.H. Porter, S.1. Ackley, and D.T. Ross,
"Generation of Efficient, Lexical Processors Using Finite
State Automatic Techniques," Communicatons of the ACM,
1968, v.11, 805-813.

(27) S.C. Kleene, "Representation of Events in Nerve Nets,"
Automata Studies (edited by C. Shannon and J. McCarthy),
1956, Princeton University Press, Princeton, N.J., 3-40.

- (28) D.E. Knuth, "On the Translation of Languages from Left to
Right", Information and Control, 1965, v.8, 607-639.

G--80

(29) D.E. Knuth# "Sematics of Context-Free Languages,"
* ~Mathematical System Theory, 1968, v.2, 127-146.-

(30) S. Kuno and A. Oettingerr "Multiple-Path Syntactic
Analyzer," Information Processing 62, 1962, North-Holland,
Amsterdamp Netherlands, 306-311.

(31) M. Leek, "LEX-A Lexical Analyser Generator", computer
Science Technical Report 31, 1975, Bell Telephone
laboratories, Murray Hill, N.J.

(32) P.M. Lewis and R. E. Stearns, "Syntax-Directed
Transduction," Journal of the ACM, 1968, v.15, 465-488.

(33) P. Lucas and K. Walk, "On the Formal Description of PL/I,
"Annual Review in Automatic Programming," 1969, v. 6, 105-

* 182.

(34) A.A. Markov, "The Theory of Algorithms," Proceedings of the
Steklov Instituter 1951, v.381 176-189, in Russian.

(35) W.S. McCullough and E. Pitt., "A Logical Calculus of the
Ideas Immanent in Nervous Activity," Bulletin of
Mathematical Biophysics, 1943, v.5# 115-133.

(36) M. Paul, "ALGOL 60 Processors and a Processor Generatorr"
IFIP Congress, 1962, Munich, 493-497.

(37) E.L. Post "Recursive Unsolvability of a Problem of Thue,"
Journal of Symbolic Logic, 1947, v.12, 1-11.

(38) M.O. Rabin and D.S. Scott, "Finite Automata and Their L
iL Decision Problems", IBM Journal of Research andDevelopment, 1959, v.3, pp. 114-125.

(39) D.S. Scott, "Outline of a Mathematical Theory of
Computation," Proceedings of the 4th Princeton conference
on information Science and Systems, 1970.

(40) T.A. Standish, "A Data Definition Facility for Programming
Languages," Ph.D. Thesis, 1967. Computer Science
Department, Carngie-Mellon University, PittBburt, P.A.

(41) A.M. Turing, "On Computable Numbers with an Application to
the Entscheidungsproblemp" Proceedings of the London
Mathematical Society, 1937, ser.2, v.42, 230-265.

(42) N. Wirth and H. Weber, "EULER: A Generalization of Algol,
and its Formal Definition (Part 1)1" Communications of the

L JACM, 1966, v. 9, 13-25.

G-8 1

TECHNOLOGY CASE STUDY
SOFTWARE ENGINEERING CONCEPTS

Dr. John H. Manley

Computing Technology Transition, Inc.

82 Concord Drive
Madison, Connecticut 06443

(203) 421-4585

MANAGEMENT OVERVIEW

The fundamental purpose of software engineering is to put order and
discipline into the process of planning, developing and supporting
software for use in industrial, military, Government and consumer
products. Since every sector of modern society is now dependent on
software in one form or another, software products must be virtually
error-free, yet be produced as economically as possible. The time has
therefore arrived, that software engineering is no longer a luxury, but
a necessity for survival...especially with respect to United States
mission critical systems.

The concept of *software engineering* was first documented at a 1968
NATO-sponsored conference by a German professor, Fritz Bauer. His
simple but yet powerful statement was that software engineering is:

*The establishment and use of sound engineering principles in -
order to obtain economically software that is reliable and works
efficiently on real machines.*

This concept has been embellished since that time by the professional
community, but has not been changed. Some of the basic wengineering
principles' that have become generally accepted as being appropriate to -
software engineering are as follows:

a. A SYSTEM PERSPECTIVE is taken with respect to every task and
activity pertaining to software planning, development and support. This
requires the use of a LIFE CYCLE FRAMEWORK so that every operation can
be viewed in perspective on how it impacts the overall software system
development and support operation, especially with relation to every
major software project's total cost and schedule.

This report was prepared as part of work performed for the Department
of Defense STARS Joint Program Office by the Computer and Software
Engineering Division of the Institute for Defense Analyses.

G-82

b. Methods and tocis are used to SIMPLIFY COMPLEXITY (both
management and technical). They must be based on provable principles

* that can generate reproducible results. This is the reason that
STRUCTURED METHODS such as work breakdown structures and structured
programming are very important parts of any software engineering tool
kit.

* C. MANAGEMENT DISCIPLINE is instilled through the use of STANDARD
* r. PRACTICES and MEASUREMENT SYSTEMS to help improve cost and schedule

estimates and better control interacting life cycle processes.

d. A constant focus on PRODUCTIVITY IMPROVEMENT and QUALITY

CONTROL help keep management alert to any new method# tool or techniquethat may offer improvement.

re. AUTOMATION and REUSE OF STANDARD PARTS (reusable code) arer principles inherent in every engineering profession, including software
engineering.

*f. The newest concept to emerge with respect to software
*engineering is that of SOFTWARE "FACTORIES.0 This is an ideal

*industrial environment wherein now and complex defect-free softwareI systems (not only user applications) can be *manufactured' orders of
magnitude faster than is possible today.

In 1984, active users of software engineering (those that profess to
practice at least some of the principles) include:

IL a. Most defense and space system builders.

b. Most leading commercial aerospace companies.

Users that are experimenting with software engineering are:

- a. Many developers of commercial high risk systems such as those
that control airline reservations, public telephone switching,
electronic funds transfer, and power or natural gas distribution.

b. Some large scale data processing/suanagement or business
information system operations, such as exist in Department of Defense
logistics organizations, and in the insurance and finance industries.

c. A small number of commercial engineered products companies
(just now increasing their use of embedded microcomputers in products
such as automobiles, major applicances and the like).

- ~What is the reason for the expanding uses of software engineering?Simply stated it involves the benefits derived from the application of
the above stated engineering principles to the software life cycle...a

G-83

.L+| + i " -

series of well-defined steps that comprise the essential elements of
software planning, development and support.

Since the benefits that can accrue to those who choose to practice
software engineering are so extensive, the challenge for the Department
of Defense is to improve the current state of practice as rapidly as
possible within the Defense community. Some connceptual approaches that •
have been advocated as being the most effective are as follows.

a. Develop a coherent model of software planning, development and
support that can be applied successfully within a given organization.

b. Identify, collect and integrate sets of life cycle support
methodologies into a consistent overall software engineering process
that is compatible with an organization's existing *standard* approach
to planning, developing and supporting software on a professional
basis. This defines and codifies a tailored standard life cycle
approach or SOFTWARE LIFE CYCLE FRAMEWORK.

c. Connect (by first coordinating and then integrating) individual
organization tools and methods into the life cycle framework by
defining subset methodologiep that appear useful to codify. Some
SOFTWARE LIFE CYCLE SUPPORT METHODOLOGIES that have been found to be
highly useful include requirements tracing and validation (from user _
requirements to operational system)l software configuration control;
test planning, execution aad results analysis; and integrated data base
management systems to include design dictionary and data dictionary
functions.

d. Select and then automate required paper-intensive manual
methodologies such as those used in planning, software design and J
project management. Insure that during the automation step that each of
the INDIVIDUAL AUTOMATED METHODS ir integrated into the life cycle
framework.

e. Select and automate (as necessary) STAND-ALONE TOOLS that are
compatible with the overall life cyclei framework and selected life
cycle support methodologies. -

f. As an operational imperative, develop a consistent and well
integrated set of COMPUTER AIDED SOFTWARE ENGINEERING processes,
methodologies, individual methods and stand-alone tools. The
undesirable alternative is an eclectic and burdensome mixturo of
automated and manual methods.

g. Throughout the above process, educate and train the software
planning, development and support organizations, from executives to
bench-level workers to effectively institute the *cultural change' that
"will result from institutinj the SOFTWARE ENGINEERING ENVIRONMENT that .
will evolve during the above implementation activity.

G-84

Although software engineering is a relatively new concept, applications
of software engineering principles are becoming increasingly accepted
and used throughout the computing industry. However, some
implementation problems are evident, primarily in the area of large
scale method and tool integration.

*Problems associated with software engineering implementation were
addressed in 1983 by STARS-sponsored working groups such an the Rights
In Data Working Group and the Software Engineering Institute Working

- ~Group.1 Also in 1983#the IEEE Computer Society studied the problem in an
-internationally-attended workshop. Concepts for solution are now

emerging in the form of automation aids such as "computer aided
software engineering," enhanced human engineering of software k,
engineering environments and tools, and organizational solutions such

- as the proposed Software Engineering Institute.

* - As more effective computer aids for software engineering are developed
V over time, most of the present technical implementation problems will

be overcome. This will permit movement toward the next major conceptual
software engineering milestone, the development and implementation of
software "fcore.

G-85

HISTORY 0P SOFTWARE ENGINEERING CONCEPTS
(Time Line)

1940's Military computing needs for ballistic tables,
astronomic navigation tables# and so forth satisfied by
newly invented digital machines. Software very
primitive and simple. *Bug" was a real mothi

1947 First public symposium on computers sponsored by Navy
Bureau of Ordnance (word computer not yet used -- large ,
scale digital calculating machinery*).

1950's Focus on automation of existing manual business systems
through "data processing.* Functional programming also
taking place in the scientific and military
"communities. Much *software was electromechanical.

1960's In projects like SAGE, large assemblages of programs for'
"military systems were being attempted, rather than
develo~ping single programs or small sets of programs.
Lessons learned generated the need for a new
philosophical viewpoint which would enable software
designers to create systems (not just single programs) .6
that worked.

1965 (Brooks Bill) P.L. 89-306 codifies Government computer
hardware procurement to reduce duplication and cost to
Government. Creates eventual problems with "embedded
computerm developments as underlying concepts apply to
data processing community and not an engineering
approach to hardware/software systems.

Late 1960's Concepts that were discoverede...difference between
logical design (ioe., abstract, conceptual) and physical'
design (i.e., blueprint, one-for-one correspondence to
what will be built)# philosophies of design (e.g.,
top-down) and the use of protoatypes from which to learn
and protect an investment.

1968 "Software engineering coined by Fritz Bauer at a NATO
Conference in Garmisch, West Germany. Essence is to use-""sound engineering principles" to develop software.

1968 'Quantitative measyuements of software quality proposed
at ACM Nationial Conference.

1969 Collected papers by Julius Tou on software engineering
issues win the small [i.e., technologies] no major
emphasis on management or systems
engineering.. .recognized problem however.

G-86

K 1969-70 Air Force Systems Command mission analysis CCIP-85
delineates in a nine-volume report the need for an
engineering approach to command and control system
software development and support,

1970-72 Lessons learned at IBM promoted concepts in the form of
top-down design, chief programmer teams, structured

* .programming [,structured design, design walk through,
software design language, unit development folders,
quality assurance/configuration management and
life-cycle maintenance.

1973 *Embedded computer system* coined by John Manley to
separate concepts of software development as integral
part of an engineered product as opposed to data
processing oriented applications programs.

r 1973 Symposium on "High Cost of Software" at Monterey Naval L
Postgraduate School determined that management of
software for military systems a major problem that needs
attention.

1973 Air Force Systems Command established special office to
* oversee software planning for "embedded computer

systems.*

1973 First set of collected readings on software engineering
edited by Fritz Bauer...used as early advanced course
text.

L 1973 Air Force Systems Command proposed an Air Force
Regulation 0800-xx' to codify embedded computer system
software development as a part of a systems engineeringK process. Separates acquisition from data processing
oriented "Brooks Bill.'

- 1973 Havatny and Janos stated the *real breakthrough will be
when 'art' becomes 'engineering practice,' i.e., when
the process of planning and implementing a new set of
programs comprising a new software system is as much a
routine engineering activity as it is with any other
product."

1974 U.S. Air Force published policy guidance on engineering
approach to embedded computer system software. /1

1975 U.S. Air Force published AFR 800-14...codified '800.xxw
I ~1975 First International Conference on Software Engineering

held in Washington, D.C. sponsored by the IEEE Computer
Society Technical Committee on Software Engineering.

G-87

1975 Joint Logistics Commanders Software Reliability Work
Group (SRWG) Report recommends detailed plan to OSD to
extend APR 800-14 and Navy NIL STD 1679 embedded
computer system software development concepts to
Department of Defense level.

1975 Office of Secretary of Defense (DDR&E) proposed a single7
programming language for embedded computer system
"software. Dubbed DoD-1.,

1976 ACM SIGSOFT (Special Interest Group on Software
Engineering) established. First issue of Software
Engineering Notes published.

1976 DoDD 5000.29 published as result of JLC SRWG proposal
and testing in form of a five-year software improvement
plan (*Blue Book*). Separates 'embedded computer
systemw acquisition from Brooks Bill (1965).

1976 Set of allowable programming languages limited by the
Department of Defense through publication of DoDI
5000.31.

1977 NASA Software Engineering Laboratory established.

1979 First formal textbooks on "software engineering*
available to educators (e.g., Jensen and Tonies,
Zelkowitz et.al.).

Late 1970's Concept of the need to solve "real world" problems.
This resulted in two general approaches to software
engineering... Methods (strategies, recommendations, or
guidelines based on a philosophical view) and techniques
(tactics or well-advised "tricks of the trade").

Late 1970's IEEE Computer Society working to define and get
certification for a standard undergraduate degree
program in Software Engineering. Concept that software
can be "engineered" meeting heavy resistance from "real*
engineers.

Late 1970's Initial university curricula (sets of courses) on
software engineering begin trial use.

1980 Wang Institute masters degree program in Software
Engineering certified by Commonwealth of Massachusetts.

1980 Harlan Mills distinguishes software engineering from
computer science. Advocates separation in
universities.

G-88

S i- %' b. • - , ,, . • "• % -. ..- w•, *'*W U ¶ 7 7 7'• • • • •

r t ",

1981 *Warner Amendment" to P.L. 96-511 completes the
separation of embedded computer system acquisition from
Brooks Act. *Embedded computer systems* become a subset
of an enlarged set of 'mission critical systems' [i.e.#
Intelligence, Cryptologic, Command and Control, Integral
Part of Weapons System (original "embedded" concept),
Critical to Direct Fulfillment of Military or
Intelligence Missions]. These systems are to be 'system
engineered.'

"1981 First software economics textbook by Barry Boehm.

1982 First commercially-oriented software engineering
textbook by Roger Pressman...focused primarily on
commercial engineered products software development.

! ,1982 Department of Defense begins discussions on desirability
.. •of establishing a Software Engineering Institute.

1983 Beginning of the popularization of software engineering.
'Software engineering" commonly appears in the trade
press, technical literature and in professional
conversation.

1983 Ada directed by Office of Secretary of Defense to be
the single programming language for "mission critical'
systems.

1984 "Computer aided software engineering' (CASE) defined
by John Manley in an award-winning paper at a Federal
data processing conference in Washington, D.C. Concept
is the need for tools (computer aids) to effectively
"implement software engineering in production
environments.

1984 A software 'factory" approach for Department of Defense
S- proposed by Edith Martin at a conference in Washington,

D.C. Emphasis on building on a software engineering
base to be able to reuse code and fully implement
computer aided software engineering (CASE).

1984 Department of Defense formally announces its intention
to establish a Software Engineering Institute through
competitive procurement.

L

G-89I 4

TECHNICAL APPENDIX

The following technical back-up data in provided to help justify the,.-,
summary statements included in the came study Management overview.

This Appendix contains selected quotations arnd other excerpts from the 7.
professional literature written by a great number of individuals, most
of whom are considered to be software engineering pioneers and
principal spokespersons.

Since the field is so new (less than 20 years old), no single person or
group has yet emerged that can be quoted as-..he authority on software
engineering. Therefore, it is hoped that the following material willý-
provide at least a general understanding of what the "concept of
software engineering" is all about.

The Appendix is organized into two overall sections as follows:

1. Definitions of Software Engineering.

This section is intended to show how the original statement by Bauer in
1968 has not been substantially changed over time.

2. Software Engineering Concepts.

This section contains excerpts from various professionals whichý -

collectively provides insight into the problems software engineering is
supposed to solve, together with some recommended solutions.

DEFINITIONS OF SOFTWARE ENGINEERING-

Bauer, F. L. (1972) -- ...The establishment-and use of sound
engineering principles in order to obtain economically software that is.
reliable and works efficiently on real machines.

Jensen, R. W, and Tonies, C. C. (1-1979) -- The software engineer-
must be able to determine the actual needs of a user; select a general
approach to the system development; analyze requirements to determine

* and resolve conflicts; establish a design to achieve the desired
performance within constraints imposed by cost, schedule, and operating
environment; develop new technical solutions; and, finally, manage a

* group of individuals with a wide range of personalities, disciplines, -
* and goals.

G-90

I-

* I Mills, H. D. (1-1980) --... software engineering requires both
software and engineering as essential components. By software we mean
not only computer programs, but all other related documentation
including user procedures, requirements, specifications# and software
design. And by engineering, we mean a body of knowledge and discipline
comparable to other engineering curricula at universities today, for
example, electrical engineering or chemical engineering.

the We distinguish software engineering from computer science by
tedifferent goals of engineering and science in any field - practical

construction and discovery. We distinguish software engineering from
computer programming by a presence or not of engineering-level
discipline. Software engineering is based on computer science and
computer programming, but is different from either of them.

Lehman, N. M. (1-1980) -- ...as mankind relies more and more on
the software that controls the computers that in turn guide society, it

r becomes crucial that people control absolutely the programs and the
processes by which they are produced, throughout the useful life of the
program. To achieve this requires insight, theory, models,
methodologies, techniques, tools: a discipline. That is what software
"engineering is all about.

Peters, L. J. (1-1980) Software design is a branch of software
engineering.

Belady. L. (1-1980) p r ...neither is there an agreed upon
definition of software or of its engineering...[on the other
hand] ...all seem to accept the great variety of presently professed and
applied approaches to improve software quality and to reduce cost of

L its development, maintenance and operation.

Freeman, H. and Lewis II# P. M. (2-1980) -- Software engineering
copthe artr science, and discipline of producing reliable software
efficiently...

Boehm, B. W. (1-1981) -- Our definition of software engineering is
based on the definitions of software and engineering given in the
current edition of OWebster's New Intercollegiate Dictionary (1979]:

o Software is the entire set of programs, procedures, and related
documentation associated with a system and especially a computer
system.

o Engineering is the application of science and mathematics by
m which the properties of matter and the sources of energy in nature are

made useful to man in structures, machines, products, systems, and
processes.

Since the properties of matter and sources of energy over which
software has control are embodied in the capabilities of computer

G-91

* .. .-.-.....- , ., -,

equipment, we can combine the two definitions above as follows:

o Software engineering is the application of science and
. L-: mathematics by which the capabilities of computer equipment is made

useful to man via computer programs, procedures, and associated
i [____documentation.

Pressman, R. S. (1-1982) -- The software implementation of a
problem solution...can be approached by using a set of techniques that
are applicaton-independent. These techniques form the basis of a
software engineering methodology...Software engineering is modeled on
the time-proven techniques, methods, and controls associated with
hardware development. Although fundamental differences do exist between
hardware and software, the concepts associated with planning,
development, review, and management control are similar for both system
elements. The key objectives of software engineering are (1) a

'--- well-defined methodology that addresses a software life cycle of
planning, development, and maintenance,' (2) an established set of
software components that documents each step in the life cycle and
shows traceability from step to step, and (3) a set of predictable
milestones that can be reviewed at regular intervals throughout the
"software life cycle.

SOFTWARE ENGINEERING CONCEPTS "

, . Bauer, F. L. (2-1980) -- The term "software engineeringm is now 12
years old [as of conference in 197911 "computer science" as a new
scientific discipline is perhaps 20 years oldl both are based on the
development of the modern computer which is not more than 40 years , -

old.

In 1947, a symposium on "Large-Scale Digital Calculating
Machinery" (the word computer was not yet used) was held at Harvard,
organized by Professor Howard Aiken and sponsored by the Navy

7 Department's Bureau of Ordnancel it was probably the first public
symposium on computers...That is how computers started, with
applications to firing tables, neutron diffusion, telecommunication,
cryptography, and buzz-bombs - or should I say with Aikenp von Neumann,,
Stibitz, Turing, and Zuse.

[as of 19791 It has taken us a long time to arrive at our
present state and that it will be a long time before we shall have

* genuine software engineering. My guess is that this will not be fully '
accomplished in the next 10 years [1989]. It needs a "change of
culture." What I expect for the next 10 years, however, is more work on
formalization and that its importance will be better
understood...Indeed there is no way out: a chemist cannot work today
without a quantum mechanics background, a classical engineer has to
learn some mathematics, and a future software engineer will have to
learn what formaliztion is and how to work with it.

G-92

Brown*, J.C. (1-1980) -- ..software engineering is just now
beginning to turn its attention to the problem of designing and
implementing programs which meet performance goals and performance
criteria. (SIGMETRICS, ACM Special Interest Group on Performance
Measurement and Modeling was born from 1971 Conference on Performance
Measurement and Modeling (Boston) sponsored by SIGOPS, ACM Special
"Interest Group on Operating Systems.

Hatvany, J. and Janos, J. (1-1980) -- ... real breakthrough will be
when "art" becomes "engineering practice, i.e., when the process of
planning and implementing a new set of programs comprising a new
software system is as much a routine engineering activity as it is with
any other product. [originally stated by the author in 19733.

Yeh, R. T. and Zave, P. (1-1980) -- ... we are optimistic about
progress toward a disciplined approach to the requirements phase,
although much more research effort, particularly in an experimental

rB Idirection, is needed to make it commercially practical.

Mills, H. D. (1-1980) -- The full discipline of software
"engineering is not economically viable in every situation. Writing
high-level programs in large well structured application systems is
such an example. Such programming may well benefit from software
engineering principles, but its challenges are more administrative than
technical, more in the subject matter than in the software.

However, when a software package can be written for fifty
thousand dollars, but costs five million to fix a single error because
of a necessary recall of a dangerous consumer product, the product may
well require a serious software engineering job, rather than a simple

i programming job of unpredictable quality.

Since the content of software is essentially logical, the
"foundations of software engineering are primarily mathematical - not
the continuum mathematics underlying physics or chemistry, of course,
but finite mathematics more discrete and algebraic than analytic in
character...software engineering uses continuum mathematics only for
convenient approximation, e.g., in probability or optimization theory.

The primary difficulty 'in software engineering is logical
complexity. And the primary technique for dealing with complexity is

- structure. Because of the sheer volume of work to be done, software
development requires two kinds of structuring, algebraic and
organizational...the result of proper structuring is intellectual
control# namely the ability to maintain perspective while dealing with
detail, and to zoom in and out in software analysis and design.

The management of software engineering is primarily the
management of a design process, and represents a most difficult
intellectual activity. Even though the process is highly creative, it
must be estimated and scheduled so that various parts of the design
"activities can be coordinated and integrated into a harmonious result,
and so that users can plan on results as well.

G-93

In software engineering, there are two parts to an estimate -|* making a good estimate and making the estimate good. It is up to the
software engineering manager to see that both parts are right, along,-
with the right function and performance.

Musa, J. D. (1-1980) -- ...the field of software reliability_
metrics has made substantial progress in the last decade. It cannot yet'
provide a standard cookbook approach for widespread..
application...however it is clearly beyond the pure theory stage and it
can provide practical dividends for those who make the modest.'
investment in time required to learn and apply it.

Curtis, B. (1-1980) -- Software wizardry becomes an engineering
discipline when scientific methods are applied to its development. The-
first step in applying these methods is modeling the important',
constructs and processes. When these constructs have been identified,
the second step is to develop measurement techniques so that the,
language of mathematics can describe relationships among them. The.
testing of cause-effect relationships in a theoretical model requires
the performance of critical experiments to eliminate alternative
explanations of the phenomena. Even when possessed of supportive,.
experimental evidence, our sermonizing should be cautious until we have
established limits for the generalizability of our data.

There is no substitute for sound experimental evidence in,-
arguing the benefits of a particular software engineering practice or
in comparing the relative merits of several practices...scientific.

= study of software engineering is young, and its rate of progress will.
improve as measurement techniques and experimental methods mature.

Distaso, J. R. (1-1980) -- Obtaining satisfactory software'
requirements remains the single largest obstacle to software project.
success...The key elements of this problem are the following:

1) continually changing user needs

2) scheduling difficulties of major system developments

3) communication barriers among users, system designers and-
software designers

"4) lack of use of new generalized methodologies -

5) misapplication of simulation

"In early 1970's...lessons learned at IBM...presented
methodology which included the concepts of top-down design, chief
programmer teams, structured programming [,structured design, design
walk through, software design language, unit development folders,
quality assurance/configuration management, life-cycle
maintenance]...These concepts received widespread acclaim in the
literature, but did not as readily become accepted practices within the-

G-94

industry. Although a 1977 study by Holton implied a lack of widespread
usage of these approaches at that time, Munson demonstrated at a 1979
workshop on project management that at least most aerospace and defense
system contractors now use some version of these practices as a matter
of policy.

As the 1970's were completed...many large projects are being
completed on schedule and within cost; a methodology for controlling
large developments is being employed in many placest and reliable cost
models are being demonstrated and validated ... it is realistically I
possible today to estimate, develop and field a large operational
software system with a high probability of success...given reasonable
development conditions, successful developments of monolithic systems

*nmshould start becoming the norm. Unfortunately, the processing demands
of the 1980's will not likely allow this utopian condition to last for
long. Some of the areas which software managers should watch for in the

N .1980's include:

Requirements Definition...changing customer specifications

Distributed Processing...many monolithic system procedures
and techniques not transferable or upgradable ... multiplication of

nupossible paths, intraprocess timing and deadlock, synchronization of
data bases, nondeterminism of the programming problemo...adds new
complexity

Microprocessing...lessons of 1960"s of need for higher level
languages, structured developments, integration principles, etc., are
being relearned

Personnel...growth of data-processing industry accelerated
... availability of trained personnel almost completely exceeded.

"Super Systems...(PET, communication, command and control,
etc.)o..these systems, by their very nature, are beyond the scope of
understanding of any person or team of persons...yet data-processing

-- industry must demonstrate a capability to evolve this class of system
to provide the services demanded by society while respecting the
concerns of society for privacy and proteotion against "big
government/business.*

Government Regulations...solution of government to this
perceived "problemm [software] is likely more regulation and
standardization ... while not all bad, potential effect of
overregulation at a time when innovation is required could be
devastating.

Peters, L. (1-1980) -- [Historical perspective]

Emphasis in early software development was on obtaining a
program which worked. That is, it gave answers which agreed with
accepted values or, where accepted values did not exist, saved large

G-95

amounts of manual labor...1930's using comptometers and a lot of manual
labor [1940's for astronomic and ballistic tables, 1950's for business
data processing]

1960's ... instead of developing single programs or small sets
of programs, large assemblages of programs were being attempted. [SAGE
for example] This ushered out the age of functional programming and
ushered in the age of structure oriented programming...need for some
philosophical viewpoint which would enable software designers to create
systems (not just single programs) that workedl systems whose
construction was aided by the design and not encumbered by it.
... concepts *discovered"...difference between logical design (i.e.,
abstract, conceptual) and physical desIgn (i.e., blueprint, one-for-one-
correspondence to what will be built), philosophies of design (e.g.,
top-down) and the use of prototypes from which to learn and protect an
investment. Much of this ferment peaked in the late 1960's and early
1970's with the advent of some specific methods and approaches to the
problem of software design representations.

Still need to solve "real world* problems. This has resulted
in yet another wave of approaches. This body of help now available
[1980] falls into two classes-methods (strategies, recommendations, or
guidelines based on a philosophical view) and techniques (tactics or
well-advised "tricks of the trade").

G-96

SELECTED REFERENCES

1-1969: P. Naur and B. Randell, Eds., "Software Engineering: Report
on a conference sponsored by the NATO Science Committee,"
(Garmisch, Germany), Oct 7-11, 1968. Brussels, Belgium:
Scientific Affairs Division, NATO, 1969, 231 pp.

1-19791 R. W. Jensen and C. C. Tonies, Software Engineering,
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1979.

1-1980: Proceedings of the IEEE, Special Issue on Software
Engineering, September 1980

2-1980: H. Freeman and Lewis II, P. M., Software Engineering, Academic
Press, New York, 1980.

r 1-1981: B. Boehm, Software Engineering Economics, Prentice-Hall, Inc.,
Englewood Cliff., N.J. 1981

1-1982: R. S. Pressman, Software Engineering - A Practitioner's
Approach~, McGraw-Hill Book Company, New York, 1982.

1-1983: Communications Of the ACM, "Special 25th Anniversary Issue,"
SVol. 26, No. 1, Jan 1983.

"1-1984: R. Pairley, Softwre Engineering, McGraw-Hill Book Company, New
York, 1984 [in printing]

G-97

TECHNOLOGY CASE STUDY

SOFTWARE METRICS

Dr. John H. Manley

Computing Technology Transition, Inc.

82 Concord Drive
Madison, Connecticut 06443

(203) 421-4585

MANAGEMENT OVERVIEW

The primary function of software metrics is to assist •i genw."' in
planning and controlling medium to large scale sof*wu..e develop:.ient
projects. Since management measures such as headcount, lab•r rost,f
burden components, and so forth are always necessary, this rep .1 will
only address special metrics required to plan and control softwar.e as a
physical component if a system or as a product in its own right.

In order to plan Lny software development project, management wants
answers to the following questions in quantitative terms: .

1. How much software can we reuse? Although somewhat peripheral to
the main topic, this is the most important question of all since it
determines how much work can be avoided before commiting resources to
new work.

2. How much new software must we produce?

3. How difficult will it be to produce?

4. How much will it cost to produce?

5. How long will it take to produce? Is this fast enough to meet
our commitment, or meet an anticipated threat? -

6. How difficult will it be to maintain once delivered to a
customer? This is the second most important question for enlightened
management to have answered up front since rapidly growing software
inventories require increasing numbers of human and physical resources
to maintain them. This burden Mnust be analyzed carefully at thle beginning
of every new project to determine whether or not the projected increase
will be manageable.

This report was prepared as part of work performed for the Department
of Defense STARS Jcint Program Office by the Computer and Software
Engineering Division of the Institute for Defense Analyses.

G-98

In order to control a software development project once it is ongoing,we would like to know the following in quantitative terms:

1 1. How fast are we developing the software in each defined stage
or phase of the process?

2. How good is the software product at each stage of the process?

3. How far have we come in developing the software?

4. How much farther do we have to go in developing the software?

Finally, management always wants to know if it can find means to
improve any facet of operations in order to reduce costs. This includes
simple *cost avoidance" and more complex "value engineering" activities
commonly used in hardware engineering. The objective is to increase
profits directly, or indirectly through lowering prices to improve
competitive position and increase volumes with smaller margins. L

* •Regardless of the tactic involved, all cost reduction activities
require two major ingredients. First, a sound experimental methodology
or approach to make valid comparisons between competing processes, 7 1
methods, tools and techniques. Second, a valid baseline or starting3 criteria upon which proposed changes can be evaluated. Some of the
questions pertaining to softwai'e product baselines that require
"quant.• . swu arc as follows:

1. What is our current aoft-?,-., development productivity rate?

S2. What is our current software pro&Ict quality level?

The software metrics that have been proposed, ex'perimeaed uth in'
univerities and laboratories, or actually used in practice number in
the thousands. To possibly oversimplify this very complex topical area,
I will categorize software metrics into a relatively small set that can
be related to answering the practical questions listed above.
Therefore, the primary categories of software metrics are defined as
follows:

A. Software Development Productivity (Actual)

1. Physical Output per Unit Input

2. Functional Output per Unit Input

B. Software Product Attributes (Actual)

1. During Development

a. Software Volume

G-99

Il!

b. Software Quality

c. Software Complexity

d. Software Testability

2. Upon Delivery to Customer/User

a. Software Volume

b. Software Quality

c. Software Complexity

d. Software Maintainability

3. During Operation (After Customer/User Acceptance)

a. Changes in Software Quality

b. Changes in Software Complexity

c. Changes in Software Maintainability

C. Predictive Software Metrics

1. Software Productivity Estimates

a. Physical Output per Unit Input

b. Functional Output per Unit Input - -~

2. Software Quality Estimates (Examples)

a. Faults or Defects/Unit Volume at Delivery

b. Probability of Failure/Unit Time

C. Probability of Failure/Number of Transactions

d. Testability

e. Maintainability

f. Other milities-

3. Software Project Estimates

a. Cost to Complete (from any point in time)

b. Completion Date (from any point in time)

c. etc.

G-100

. -_.- --

As can be inferred from this very abbreviated outline, an effective set
of software metrics for any organization is not only difficult to
initially define, but is even more difficult to develop and use without
expert assistance.

Furthermore, since the management measures suggested above are most
often (but not entirely) based on empirical statistics, a set of
reliable software measures will take at least three to four years ti
establish in any organization. This assertion is primarily based on
over 20 years of experience working with management measures to include
setting up comprehensive software measurement systems both for
Department of Defense organizations and large commercial firms. This
assertion can also be verified by the literature (see the Technical

iil- Appendix to this Case Study).

- Another major category of software metrics involves analytical
approaches such as cost and schedule models, attempts at defining a
software uscience," software reliability models, complexity measures
from a microscopic viewpoint, and so forth. Most of this work is still
in an embryonic stage and, in my opinion, will progress much more
slowly that the empirical efforts. For a better understanding of this
area see the Technical Appendix to the Case Study.

In summary, software metrics are essential to establishing and
improving software engineering and management practices for any
software product. Since the state of practice is still quite primitive,
considerable effort must be expended to put them into effective use.

ii-i L

•iii_

--- •..lO•

",;;i ~ • -

!! , !* ** - * * **

HISTORY OF SOFTWARE METRICS
(Time Line)

1964 System Development Corporation recognizes importance of L.

estimating cost of computer program production

1968 Quantitative measurement of computer program quality
discussed at ACM National Conference

1969-70 U.S. Air Force command and control system Mission
Analysis (CCIP-85) documents lack of quantitative
knowledge about software -- stimulates research --

software metrics need established

1972 Halstead metrics concept first published -- first
attempt at establishing a metrics based "software
science" -- start of controversy

. 1972 TRW begins quantitative experiments on software
reliability

1973 Software still touted as "invisible cloth" in the trade
press (Datamation) -- considered unmeasurable in -
practice

Scirca 1974 IBM Santa Theresa Research Center begins collecting
empirical data on commercial software productivity and
quality

*!,: 1975 Major Joint Logistics Commanders study of software
reliability -- probabilistic definition of software
reliability distinguished from hardware reliability
metrics -- software metrics need reconfirmed

1976 First significant quantitative results of IBM commercial.
software quality improvement projects reported

1976 Software testing metrics concepts proposed by Mohanty
and Adamowicz

1976 Software complexity measure proposed by McCabe

1977 NASA Software Engineering Laboratory established --
initial results reported

1977 Halstead's metrics refined -- in book form as "software
s-cience" -- still controversial

* 1977 IBM Federal Systems Division proposed measures for
embedded computer system programming measurement and
estimation

-A G-102

1978 Software data collection and analysis formalized at the
Air Force Rome Air Development Center -- beginning of
DACS (Data &Analysis Center for Software)

1978 IBM commercial software productivity and quality
measurement successes reported

1980 ITT establishes a major software measurement program -

initial productivity and quality baseline established -

compared with DACS database (no other available)

1982 Halstead's *software scec"still not accepted by
software engineering community -- controversy continues

1982 User oriented software productivity metrics called
"function points" established by IBM in commercial data
processing environment

1983 Analysis of combined NASA/SEL and DACS productivity data
initiated

1983 Software metrics confirmed as a major technical need by
the Department of Defense STARS Program

*1984 ITT's software productivity and quality results reported
in the open literature for the first time -- very large
data base established but still considered prototype
system

L At the present time, the commonly agreed state of software metrics is
as follows:

1984 Complexity measures still being evaluated ... no
known commercial use

1984 OFunction pointsm not understood by non-IBM users

1984 Experimental use of software productivity measures in
commercial sector just beginning

1984 Almost no commercial use of software quality metrics

1984 Software metrics considered in the prototype stage of
technical development -- productization still required
before widespread use can be expected

G-103

"TECHNICAL APPENDIX

The following technical back-up data is provided to help support the
summar~y statements included in the case study Management Overview.

The Appendix is divided into metrics categories keyed to the summary:
statement. Only some of the areas are presented and appropriate,
references are contained at the end of the Appendix.

Even though this appendix is incomplete# it should provide enough depth'
to give the interested reader a feel for the complexity of the topical.,

* area and the need for further research. This will be especially:'
apparent with respect to software quality.

As in any product, software included, "quality connotes different
things to different people. For example, a product deeoe's'7
viewpoint is often substantially different from the user's. As a
result, quality metrics' are scattered throughout this Appendix, not-,.
by design, but of necessity.

Category Al

Software Development Productivity (Actual)
(Physical Output per Unit Input)

Software development productivity is often described in the trade
literature in terms of the number of "lines of code" a programmer can,-produce per unit of time.

Since lines of code do not physically appear for counting until well
into the software development life cycle, they are hardly'.
representative of software productivity. But, as we will see later,--
this measure can be highly useful in another way.

*The missing productivity metrics are those that measure physical',
outputs derived from carrying out activities such as requirements
analysis, top level design, detailed design, integration, testing,.
configuration management, and any other tasks considered integral partsý
of the software development life cycle process.

This point has been recognized by many researchers including those,
conducting studies at the NASA Software Engineering Laboratory. For
example, comparative research is reported in [BASILI-81] on physical
outputs such as the following:

Documentation -- Measured in pages and is defined as the program-
design, test plans, userbs guide, system description, and module
descriptions.

G-104

r

Total Number of Modules- Number of modules delivered in the
final product. A module is further defined as a separately compilable
entity, such as a subroutine, funtiont or BLOCK DATA unit.

Number of New Modules -- Number of modules in the final product -

that are not reused modules. A module is considered reused if it was
developed for another project and has less than 20% of it code
changed.

In the testing and debugging areas, other physical output metrics that
have been measured in commercial practice include:

Number of Fault Reports Generated -- Number of physical forms
produced from testing, debugging, review or inspection activities.

Number of Fault Reports Closed -- Number of reported faults solved
r satisfactorily as indicated by a Raigned off" form. On the other hand,

*source statements per person year" that have been consumed in large
projects provide an overall measure of productivity if an organization
is able to take advantage of the statistical Law of Large Numbers, such
as reported in [VOSBURGH-841. When applied consistently over time (at
least t.hree years), such rough measures can be valuable for
establishing baselines against which evaluations can be made of varicus
factors which are suspected of having an impact on productivity. This
type of factor analysis is what is most important when seeking means
for productivity improvement.

* ~Some of the factors that have been considered imp~ortant as having an

L impact on software development productivity are ac follows:
Software Complexity -- (No single measure exists. See below)

Software Quality -- (No single measure exists. See below)

Degree of Use of Modern Programming Practices -- (No single
- measure exists. Largely subjective)

* Software Support Environment -- (No single measure exists. Largely
subjective)

Total Effort -- Number of person months of effort used on a
project, starting when the requirements and specifications become final
through acceptance testing. it includes programming effort plus
managerial and clerical overhead. (Defirnitions vary)

In summary, the state of practice in measuring software productivity is
not very far advanced. Only those organizations that have been
collecting a large number of well-defined statistics for many years
have been able to establish a data base that can be used f or
comparative analyses (for example, IBM, TRW and ITT).

G-105

Category A2

Software Development Productivity (Actual)
(Functional Output per Unit Input)

Another important way to view software life cycle progress with respect
to output divided by input is from a user or customer perspective. That
is, measurements are taken to help answer the question: How
"productive" is the software group in satisfying user requirements? The

difficulty with this question is its inherently subjective nature. In
essence it is a marketing or sales question best answered by user
satisfaction questionnaires or inspection of available sales volume
information.

The reason for increasing interest in this measurement approach is due
to incredibly large backlogs of user requests for application software
systems in the commercial business, Government information, and Defense
logistics support communities. Measurements in this area are aimed at
demonstrating results of actions taken to increase the output of K
software support organizations as a whole.

In spite of its mathematical intractability, many have tried to measure
* .this area, but with little success to date. The most effort to date has -

probably been expended by IBM. Their approach has been used to support
internal administration of data processing operations for the past 4-5

* years [IBM-82]. Recently, it has been "discovered" by outsiders and is
finding its way informally into some IBM customer data processing
organizations.

* As with physical outputs, a clear definition is required for the work
product that can be divided by the labor input. IBM have dubbed their
work product measure from this customer or function-delivered
perspective as "function points," and recommend this as the primary
measure of applications development and maintenance work product.

The function points metric sizes an application program by quantifying
the data handling implied in five major forms or elements [Due to the
extreme size of the IBM document, only portions are extracted to give
the reader a flavor for its content]. User External Inputs -- IBM
provides an elaborate full-page definition that describes what to count

i- •and what not to count. For example, input forms, scanner forms,
termina. screens, keyed input and transactions from another application
are counted after first being classified as being "simple," "average," ,
or "complex." Such things as "inquiry transactions are not counted
since these are counted "as inquiries in a later question."

User External Outputs -- Again, this requires a full page
"definition from IBM [which is too long to quote here]. Examples of what
to count which must be classified are: Printed reports, terminal
printed output, terminal screens, operator messages, transactions to
another application. Caveats are included such as "do not count output

G-106

terminal screens that are needed by the system only because of the
specific technical implementation."

:1 II II .

User External Inquiries -- Another lengthy IBM definition, only
part of which is to count each input/output combination where an
on-line input generates and causes an immediate on-line output. Data ace

* entered only for control purposes, that is, to direct the inquiry
search. No update is involved in an inquiry...but, do not confuse a
major query facility as an inquiry, etc.

User Logical Master Files -- Count each major logical user data
group. This count should include each unique machine-readable logical
file, or, within a data base, each logical grouping of data from the
viewpoint of the user, that is generated, used, or manipulated by the
application. For example: Customer record, part master file, customer
"c ross-referenced index. These must be classified as done with other
elements above. (Definition continues]

Interfaces to Other Systems -- Count all major machine-readable
interfaces to other applications that do not consist of transactions.
Files, consisting of records, shared between applications should be
counted within each application. They should be counted as files or
interfaces, but not both. Interfaces, consisting of transactions,
should have been handled as inputs and outputs. Interfaces to other

"* systems should be classified for complexity with the definitions used
to classify user logical master files.

' ,After these difficult to define measures are attained, IBM further
recommends "adjusting the result' by applying 14 general application
characteristics, such as:

"Performance -- The applicaton performance in either response time
or throughput is a consideration in the design, implementation, and
maintenance.

Transaction Rate -- The transaction rate is high and had influence
on the design, implementation, and maintenance of the application.

Ease of Installation -- Conversion and installation ease were
incorporated in the design and implementation. A conversion and
installation plan was provided and it was tested during system test.

Internal Processing Complexity -- Internal processing is complex
in this application. An application is complex iis there are many
interactions and decision points and extensive logical or mathematical
equations. It is also complex if it has a preponderance of exception
processing resulting in many incomplete transactions that must be
resolved later or again.

Each of these Ogeneral application characteristics" provided a number
from zero to five that represents the degree of influence that each had

i .!G-107

on the value of the application to the user based upon the following,.
definitions:

0 -- Not present, or no influence

1 -- Incidental influence

2 -- oderate influence

3 Average influence

4 Significant influence

5 Strong influence throughout

It should be quite obvious that this approach, although conceptually aVM
proper thing to do, is fraught with subjectivity and should be only
considered as experimental at best. Much research is required to solve.
this category of software productivity measurement to make it usefuli:.
for STARS mission critical systems software, even when in the logistics
support phase.

Category Bib

Software Product Attributes (Actual)
(In-Process Software Quality)

This area of software metrics has received a great deal of attention in...
the academic and research world. In-process software quality can be-

*broken up into the various manifestations or translations of software
"during its life cycle to include requirements specifications, software
designs, source code, object coder run-time code and associated'-
documentation. Each of these categories of software has received the
attention of researchers attempting to identify metrics to measure its
quality.

One of the earliest papers on measuring program quality was by Rubey
and Hartwick in 1968 [RUBEY-68). Recently, Troy investigated measures
to aid in the evaluation of software designs (TROY-82]e t ajorl.
investigations of software quality from a Department of Defense
perspective, such as reported in (MANLEY-76] and [RICHARDS-76]0
"discovered more problems than solutions...a situation that still exists,.
today.

"In short, there is a very large literature on software quality metrics,
but no generally accepted metrics that have been put into widespread -
practice.

G-108

Category Bid

Software Product Attributes (Actual)
(Software Testability)

The goal of this area of software metrics is to help researchers and
practitioners find ways to make it easier to test software and to
determine to what extent software has indeed been tested. This area is
still in the research stage of development. See (MQNHANTY-763 for one
of the earliest definitions of the problem and a proposed solution.
Measures involve "accessibilityp" "testability,* and "testedness' which
attempt to quantify, for example, the relative ease of testing existing
software and the extent of testing that has been accomplished by

-~ - specific test cases.

r Category B2b

Software Product Attributes (Actual)

(Software Quality Upon Delivery to Customer)

There are almost as many definitions of software quality as there are
*researchers. The reason is the ambiguous nature of the term. Several

overall perspectives are important to mention:

Microscopic versus macroscopic -- This is an internal versus an
* external viewpoint. By internal or microscopic is meant simply a rating

IL given the software with respect to how well it meets its detailed
* requirements specification. By external or macroscopic is meant how

well the software satisfies the user in operation, regardless of
whether or not it perfectly meets the specification.

Quality Attributes -- This is a definitional perspective with
respect to what is included within the *quality" umbrella. Does quality

* include wreliability," "portability," *robustness," "maintainability,"
"ease of use," "ease of learning," etc., or only one or a combination
of these attributes that may or may not be associated with software
products?

Underlying Theory -- Scholars working in the software quality
metrics field have based their work on a wide variety of mathematical
foundations. These include such things as Shannon's theory, Zipf's law,
Halstead's metrics, reliability models of Jelinski-Morandar Shooman,
Littlewood-Verrall and others. A good summary of these diverse
approaches can be found in [MOHANTY-79].

L. From a pragmatic point of view, a major effort was undertaken by the
Department of Defense to try to understand software reliability as a
major component of software quality from the customer's perspective.
To volumes of [MANLEY-761 are devoted to a state-of-the-art

eplanation of software reliability to include generally acceptedILmathematical definitions that are based upon the probability of

,-G-109

software failing (or not failing) while in use. This work provided the
foundation for major software inititatives that manifested themselves
in DoD Directive 5000.29 and subsequent implementing regulations and
standards.

Concurrent to the mid-1970's DoD initiative, the commercial industry
business software sector reasoned that the most generally accepted and
useful metric was simply the number of problems" or faults or
*defects" that can be counted at predetermined points during the

-* software life cycle. This rather simplistic approach on the surface has
* proven quite useful in very large organzations such as IBM (JONES-78],

and ITT [VOSBURGH-84] where large empirical statistical data bases can
be developed relatively easily.

In essence, this approach assumes that software quality is synonYmous
with a presence or absence of software problems, much as we
subjectively view our family automobile or service in a restaurant.

* ~In short# the universally-acceptable software quality metric does not-
exist. Nor will it in the foreseeable future. This does not mean that
this most important feature of software should not be measured. On the
contrary, this implies that further research must be devoted to
narrowing the choices of offerings so that a metric, or set of metrics
encompassing both the user and developer viewpoints , can be used to

* ~evaluate and compare software products developed for mission critical ~
systems*

Category Blc/B2c

Software Product Attributes
(Software Complexity Measures)

A measure of potential computer program complexity is important for
estimating the total cost and schedule of a software development
effort. Such measures are used as inputs to cost estimating models such
"as SLIM, Wolverton, Schneider or PRICE-S "4OHANTY-81]. However, it is

* one of the more difficult areas of software metrics to devise
solutions. One major reason is the lack of an adequate empirical data
base.

To develop a software complexity data base, measures must be taken of
completed programs and then judgments made as to which measures of
complexity seem to best fit the perceived complexity of the existing
program. Once this difficult task is completed, then and only then, can
an organization hope to predict the complexity of yet to be developed
software systems. As a result, this area of software metrics is still
in a research stage [and probably will continue to be for at least 5-10
more years].

A paper presente.d at the Ith ICSE [ELSHOFF-8. j summarize~d the state of
the art in complexity metrics fairly well. Twenty complexity measures

G-110

F r!
were selected and studied for how well they identified the more complex
procedures in a software system:

The results of Elshoffhs experiments indicated that the following
subset of six numbered and rank ordered measures accounted for over 90

C_ percent of identified difficult programs in the study. The first four
alone can be useful in identifying programs that are abnormally complex
and also help guide steps to reduce their complexity [NOTE: Only after
the programming is complete).

(1) Length -- The length of the program is the total number of
tokens, the sum of the total operators and total operands.

(2) Unique Operators -- Unique operators is a count of the number
of unique tokens that are language keywords or symbols, the number of
function references, and the number of unique labels that are the
targets of GO TO statements.

(3) Data Difficulty -- The data difficulty is the average number
of appearances of each operand. It is computed as the total operands
divided by the unique operands.

(4) Unique Operands -- Unique operands is a count of the unique
* variables and constants.

(5) Statements at Level 10 -- A count of the statements that are
nested 10 or more levels deep. (Arbitrary since 10 percent of the
statements Elshoff was counting were 10 levels deep).

(6) Identifiers -- The identifiers that are explicitly declared
are counted including those variables that are declared but never
used.

Source Lines The number of lines is counted including all
"comment lines and blank lines.

-Input Lines -- The number of lines after expansion by the macro

preprocessor is counted. This is the number of input records read to
compile the program.

Statements -- The HOL statements are counted including
non-executable statements such as DECLARE in PL/l

Predicates (first known as cyclomatic complexity [MCCABE-76]) --
The predicate count, is the number of execution paths from the entry
point to the exit point of the program.

* m LConditions -- Conditions are similar to predicates with the
condition of counting logical operators in the predicates. For example,
the single predicate, (A<B)&(C>D), is counted as two conditions since
the falsity of either the condition A<B or the condition C>D leads to
the falsity of the predicate.

G-111

* - Blocks -- This is a count of the number of PROCEDURE# BEGIN, DO,
IF# ON and SELECT statements. These statements map flow of control and
nesting levels in PL/l.

Call Statements -- The CALL statements are counted.

Total Operators -- Total number of occurrences of the unique
operators*

Total Operands -- Total number of occurrences of the unique
operands.

Vocabulary -- The vocabulary is the sum of the number of unique
operators and unique operands, i.e., the unique tokens (words and
symbols).

Volume -- The volume is a measure of the minimum number of bits
needed to represent a program. Using the vocabulary and a frequency
count of each of the words in the vocabulary,, a Huffmana encoding can
generate the minimum bit representation. Analysis of Huffman encoding
leads to the formula for volume which is:

Volume -Length x log2 (Vocabulary)

Difficulty -- The difficulty is defined as one-half the product of
the unique operators and the data difficulty.

Understanding Effort -- The understanding effort equals the volume
times difficulty.

Construction Effort -- Halstead proposed construction effort as a
measure of the amount of work that was required to write a program. The -7
formula is complicated [HALSTEAD-77] as well as controversial
LLASSEZ-821.

Category C

Predictive Software Metrics

Software estimating models are very important to everyone involved in
automated systems development and support. For example, software
management is vitally interested in accurately estimating software
project costs and overall schedule. Technical management is interested
in estimating such things as hardware requirements to support a planned
software system with respect to memory size, operating speed,, and so
forth. Some of the earliest work in software metrics was in this area.
For example, see [LABOLLE-66 and NELSON-67].

As a prerequisite for success, a high quality statistical data base of
validated metrics is required as inputs into any predictive model.
Therefore, many others have experimented with correlations of factors

G-112

* with various models to determine optimum combinations of metrics as
inputs to a specific algorithm to obtain a useful output, i.ej,
analytical models such as LWOLVERTON-72, SHIOOIAN-76 and PUTNAM-78].

REFERENCES

FARR-64: Parr. L., and Zagorskir li.J., 'Factors that Affect the Cost
of Computer Programming. Volume II: A Quantitative Analysis."
System Development Corporation, Technical Documentary Report No.
ESD-TDR-64-448I September 1964

LABOLLE-66: LaBolle# V., ODevelopment of Equations for Estimating the
Cost of Computer Program Productionr" System Development

r Corporation, Santa Monica, CA, 1966

NELSON-67h Nelson, E. A., "Management Handbook for the Estimation of
Computer Programming Costs?* TM-3225/000/Ol, System Development
"Corporation, Santa Monica, CA 1967.

RUBEY-68: Rubey, R. J. and R. D. Hartwickr *Quantitative Measurement-h. of Program Quality,' Proceedings ACM National Conference, 1968,
pp. 671-677.

HALSTEAD-72: Halstead# M. H., "Natural Laws Controlling Algorithmic
Structure?,' SIGPLAN Notices, Vol. 7, No. 2, Feb. 1972

L WOLVERTON-72: Wolvertoni, R. W. and G. J. S3chick, 'Assessment of
Software Reliabilityp" TRW Software Series TRW-SS--73-04F Sep
1972.

BOEHM-73: Boehm, B. W., "Software and Its Impact: A Quantitative
Assessment,' Datamation, May 1973.

MANLEY-75: Manley, J. H. and M. Lipow, "Findings and Recommendations
of the Joint Logistics Commanders' Software Reliability Work
Group,* Vols. I and IIo National Technical Information Servicet
Department of Commerce, Springfield, VA, Nov 1975.

BOEHM-76: Boehm, B. W. et alve Quantitative Evaluation of Software e
Qualityp Proceedings, 2nd International Conference on Software
Engineering, Oct 1976, pp. 592-605.

FAGAN-76: Pagan# M. E., 'Design and Code Inspections to Reduce Errors
in Program Development,' IBM Systems Journal, Vol. 15, No. 3,
1976, pp. 182-211.

"* HMCCABE-76: McCabe, T. J., 'A Complexity Measure,' IEEE Transactions on
Software Engineering, Vol. SE-2g No. 4, Dec. 1976, pp. 308-320.

* G-113

MONHANTY-76: Monhanty,, S. N. and 14. Adamowicz. "Proposed measures for
the Evaluation of Software#* Proceedings of the Symposium on
Computer Software Engineering," New York# 1976, Polytechnic Press,
Polytechnic institute of New York, Brooklyn, N.Y. 1976

RICHARDS-76: Richards, P.K., et. al., "Factors in Software Quality, -

Ganeral Electric Presentation tinder RADC Contract P030602-76-C-
S0417 1976

* SHOOMAN-76: Shooman, M. L.# "Structural Models for Software
Reliability Prediction,* Proceedings 2nd International Conference
on Software Engineering, 1976, pp. 268-280.

BASILI-7?: Basili, V. R.g et al.# "The Software Engineering
Laboratory," Technical Report TR-535, Department of Computer
Science, University of Maryland, May 1977.

HALSTEAD-77: Halstead, N. H., Elements oie Software Science, Elsevier
North-Holland, New York, 1977, 127 pp.

WALSTON-77: Walston# C. E. and C. P. Felix, A Method of Programming
Measurement and EstimationO IBM Systems Journal# Vol. 16, No. 1#
pp. 54-73# 1977.-

PUTNAM4-78: Putnam, L. H., "A General Empirical Solution to the Macro
Software Sizing and Estimating Problemr" IEEE Transactions on
Software Engineering, SE-4, 1978, pp. 345-361.

JONES-78: Jones, T. C., "Measuring Programming Quality and
Productivity,' IBM Systems Journal, Vol. 17, No. 1, 1978.

MOHANTY-79: Mohanty, S. N., nMAodels and Measurements for Quality
Assessi"ent of Software," Computing Surveys, Vol. 11, No. 3, pp.
251-275, Sep. 1979.

BASILI-8si Basili, V. R, and K. E. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory#" The ss
Journal of systems and Software, Vol. 2, No. 1, pp. 47-57t 1981.

aOHANTY-81: Mohanty, S.., N "Software Cost Estimation: Present and
Futu__e,_ Software-Practice and Experience, Vol. 11, 1981, pp.
103-121-

LASSEZ-82: Lassez, J.-L., Do van der Knijff and J. Shepherd, "A
Critical Examination of Software Science,' Journal of Systems and
Software, Vol. 2, No. 2, June 1981, pp. 105-112.

TROY-82: Troy, Do A. and S. H. Zwebenp *Measuring the Quality of
Structured Designs, Journal of Systems and Software, Vol. 2, No.
2# June 1981, pp. 113-120.

G-114

r

IBM-82: "Application Development and Maintenance Measurement and
Analysis#* IBM Corporate Information Systems and Administration

, Guideline, No. 303# Feb. 26, 1982

PANZL-82: Panzl, D. J. "A Method for Evaluating Software Development
Techniques," Journal of Systems and Software, Vol. 2, No. 2, June
1981, pp. 133-137.

ELSHOFP-84: Elshoff, J. L., 'Characteristic Program Complexity
Measures," Proceedings of the 7th International Conference on
Software Engineering, IEEE Computer Society, Silver Spring,
Maryland, 1984.

VOSBURGH-84: Vosburgh, J., et al., OProductivity Factors and
Programming Environments, Proceedings of the 7th International
Conference on Software Engineering, IEEE Computer Society, Silver
Spring, Maryland, 1984.

G 11

L £ ..

" •~L.

I1.•

APR 800-14 HISTORY

Dr. John H. Manley

1969-72 Problem with lack of policy and specific guidance f or
software contained in Air Force *weapon systems* recognized
and documented by AFSC. Initial milestone was 9 volume
Mission Analysis, CCIP-85, sponsored by Hq AFSC and chaired
by Barry Boehm, then at Rand Corporation.

Aug 73 AFCS established Assistant for Processor and Software
Planning (forerunner of XRF and now ,.]

Sep 73 Initial three-page 'strawman of APR 800-XX developed by
Hq AFSC -- desired principles

Oct 73 Draft strawman 800-XX sent to Air Staff for comment
Nov 73 "Embedded Computer Systems' defined and categorized as class

of systems that would be the subject matter of 800-XX
[reported publicly for first time at NCC 1974 in Chicago]

Dec 73 Formal work begun on OAPM 800-XXO due to favorable response -4
by Air Staff -- How-to-do-it instructions for AFR 800-XX
policy guidance

May 74 APR 800-14 policy guidance published by USAF

Nov 74 Final draft of APM 800-XX completed by AFSC -

Jan 75 APM 800-XX redisiginated AFR 800-14, Vol. 2 and the original
AFR 800-14 redisignated APR 800-14, Vol. 1

Sep 75 AFR 8001-14, Vols. I and 2 officially published.

Gl116

I F,

FORMAL SOFTWARE VERIFICATION

I AS AN EXAMPLE OF

, ?SOFTWARE TECHNOLOGY TRANSFER

Ann B. Marmor-Squires
* TRW Defense Systems Group

2751 Prosperity Avenue
Fairfax, VA 22031

iNN

May 1984

* alm

ABSTRACT

m L Formal software verification has had an active-history of
Sover twenty years of research, development and application. It

is currently in use in varying degrees in the development of
trusted computer systems and critical sections of systems

, demanding very high reliability. Its history is traced in this
paper as an example of software technology transfer. A formal
verification chronology is given and several observations on the
technology transfer process, based on the formal verification
experience, are made.

G-117

lmG-1!7

. . 1.0 INTRODUCTION

Formal software verification refers to a rigorous mathematical

proof of correctness with respect to a set of requirements. The

.* concept of developing software programs that can be mathematically

"proved correct may be traced back to the early days of computing,

"particularly in some of Turing's writings. The active theoretical

work in proving programs correct began in the early to mid-1960s.

" "- By the mid-1970s, prototype automated program verifiers and inter-

active verification systems were developed. Early experimental use

; of the systems by groups other than the developers was carried out in

the mid-to-late 1970s. From the late 1970s on, formal software

verification has become an important component in the development of

certain critical software, particularly in systems having very high

Sreliability and security requirements. In addition, there have been

several offshoots of formal software verification that are in use by

software practitioners--symbolic execution, rigorous program reasoning

and "desk checking". While the maturation and transfer of formal

software verification is not yet complete (it is not yet in widespread

ii commercial use), it does provide a good exampl.e of the software tech-

nology transfer process. The chronology of formal verification, given

in Section 3, provides a scenario for transferring modern software

technology into practice that is fairly typical. The experiences in

the research, development and transfer of formal verification also

provide some insight into what can facilitate or inhibit technology

transfer. These are the subjects of Section 4.

This case history of formal software verification as an example

of software technology transfer was facilitated by the availability

of several survey articles and textbooks on the subject. However, none

G-118

* of these provided a critical assessment of the technology nor of its

* transfer into practice. The author's experience with formal verifica-

I tion technology and private communication with the verification system

* developers as well as users provided an evaluation of the technology

* transfer process and a measure of its success.

2.0 A SHORT SYNOPSIS OF FORMAL SOFTWARE VERIFICATION

Formal software verification may be defined as a rigorous proof

of correctness between levels of system abstraction. In the realm of

formal verification, "Icorrectness" refers to consistency between the

levels shown in Figure 1 (abstracted from [1]). The requirements are

the principal system concepts with which the high order language imple-

mentation (the program) needs to be consistent. The formal model and

* formal specifications represent different levels of abstraction of the

properties listed in the requirements. The model and specifications

are written in a formal mathematical notation and describe system

characteristics. Correctness, then, is the consistency that is main-

tained between the formal model and the formal specification, as well
L
* as between the formal specifications and the implementation.

* The 4oal of formal verification is to demonstrate mathematically

that the implementation is correct with respect to its requirements.

This is done in a progression of steps that show consistency throughout

the intervening levels (Figure 1). Proofs of consistency between all

- adjacent levels of abstraction is equivalent to directly establishing

the correctness of the implementation with respect to the requirements.

The formal software verification process is supported by automated

(interactive) specification and verification tools. Some current verif-

ication systems are intended solely for proofs of consistency between

specifications, while others include implementation languages and tools

G-119

INFOR4AL (Most Abstract)

R-- - - r--

INFORMAL
REVIEW1

SIGN VERIFICATION

LEVEL
SPECIFICATION

DESIQý VERIFICATION

N-

mm m m - -.

DESIGN VERIFICATION

LEVEL
SPECIFICATION'

DIPLEkW~TATION
VERIFICATION

HIQi ORDER
LAIP1B. NGOUAGE (Most Concrete)

Figure 1. Formal Software Verification Process

G-120

-i i -~l -

to prove properties about an implementation. The paper by Cheheyl,

et. al. [2] is a survey of several of the current verification

environments.

Most current verification environments that support implementation

verification focus on three main tools: a parser, a verification con-

U, dition generator and a theorem prover. The parser checks specifications

and implementation for syntactic and semantic correctness. The verifi-

cation condition generator produces theorems that must be proved in

order to show the consistency of the implementation with the lowest

level specification. The theorem prover is used to prove the conditions

that are generated. Theorem prover capabilities vary from fully auto-

e - matic to merely doing "proof checking"--checking that the user has

proceeded along a legal chain of logical reasoning.

3.0 FORMAL SOFTWARE VERIFICATION CHRONOLOGY

The activities and milestones pertinent to tracing the transfer

of formal software verification into use on "real" systems are:

e 1958-1966: Some early work is done on the theoreticalL foundations of the equivalence of logical program

schemes, algorithms and program statements. Ianov's
work in Russia in the late 1950s on the theory of pro-
gram schemes [3], McCarthy's presentation at IFIP
Congress in 1962 on a mathematical science of computa-
tion [4], Igarashi's Ph.D. thesis in Japan in 1964 on
algorithm and program statement equivalence (5], and
Naur's work in 1966 on program proof by general snapshots
[6] are representative of the early theoretical work.

* 1967-1969: Floyd's 1967 paper on assigning meanings to
-- programs [71 is the one most authors cite as the basis

for work in program verification. Floyd introduces the
inductive assertion technique. Dijkstra's 1968 paper
presents a constructive approach to program correctness
[8], Manna researches the relationship between the cor-
rectness of programs and first order predicate calculus
(9], and Hoare prevents an axiomatic basis for proofs

+_ +of program properties [10]. Work in automated theorem
"proving begins.

G-121

S~-.

* 1969-1971: Further theoretical work on theorem proving,
the correctness of non-deterministic programs, parallel
program schemes, program termination, program synthesis
aand program scheme equivalences is carried out. Proofs

4 of programs (FIND, TREESORT, QUICKSORT) appear in the
literature.

• 1969-1972: The first few Ph.D., dissertations on program
verifiers are completed: King's thesis at Carnegie-Mellon
University [111, Good's thesis at the University of
Wisconsin [12], and Gerhart's thesis on verifying APL
programs at Carnegie-Mellon [13].

o 1972: Hoare publishes a paper on the proof of correctness
of data representations (14].

* 1972: Several survey articles are published on program
verification: Elspas' Computing Surveys paper [15],
Linden's presentation at the Fall Joint Computer Conference
[16] and London's presentation at the ACM National Confer-
ence [17] are the major ones.

o 1972: The computer security community identifies the need
for demonstrating the correct operation of a security
kernel as an important part of the solution to building
secure computer systems.

o 1973-1974: Ragland's thesis on the construction and veri-
fication of a verification condition generator based on the
inductive assertion technique appears (18]. Good, London
and Bledsoe report on the development of the XIVUS inter-
active program verification system [19] and Elspas, Levitt
and Waldinger describe another program verification system
[20]. The former is the forerunner of the University of
Texas Gypsy verification system and the latter developed
into the SRI verifier.

o 1973-1975: The axiomatic definition of the programming
language Pascal is published by Hoare and Wirth [21]. Boyer
and Moore report on proving theorems about LISP programs
[22]. The design of the verifiable language, Gypsy, begins
at the University of Texas [23] and a committee is formed to
develop Euclid, a verifiable programming language. SPECIAL,
a formal specification language is developed at SRI [24] and
the Ina Jo specification language is developed at System
Development Corporation [25]. Reports on the languages were
published several years after the work was begun.

* 1973-1977: SPECIAL is further developed as part of SRI's
work on the Hierarchical Development Methodology (HDM), a
specification and verification system for Gypsy programs is
developed and the Ina Jo methodology, later to be called the
Formal Development Methodology (FDM), is under development.

S All of these formal verification activities are a result of
the need for formal verification as a major component in
assuring that computer systems are secure.

G-122

* 1974: The first textbook is published on the subject of
formal software verification [26].

e 1975-1979: The early application of formal software
verification and the experimental verification systems
is actively pursued. SRI'S HDM is applied to the dev-

* elopment of PSOS, the Provably Secure Operating System
(27], Gypsy and its verification environment are applied
to communications processing examples (28] and FDM
applications are begun. All the verification languages

I: (specification and/or implementation languages) and their
verification systems are early prototypes and are con-
sidered experimental.

e• 1977-1980: Work on the Kernelized Secure Operating System
(KSOS), a "secure version of the UNIXtm operating system"
is undertaken. This is one of the first major applica-
tions of verification technology. The project runs into
difficulty because the technology is not mature enough
for such an application. SRI's HDM (and SPECIAL language)
is used by Ford Aerospace (not the original developers)

r on the KSOS Project. Another major application of formal
verification to security applications is the development
of KVM-370, a kernelized version of the IBM VM-370 oper-
ating system. These applications, as well as use of the
Gypsy system, provide feedback to the major verification
system developers.

e• 1979: Boyer and Moore publish A Computational Logic [29].

* 1979: Gerhart reports on the development of the AFFIRM
* *System, an outgrowth of the XIVUS system combined with

work on abstract data type specification and verification
(30]. Luckham describes work undertaken on the Pascal

I-verifier (31].

* 1980-1982: Application of verification technology to the
developmen- of secure operating sydtems, trusted downgrade
processors and communications processors as well as to a
fault tolerant computer for aircraft control (NASA's SIFT
system) is pursued. The major experimental verification
systems (the HDM tools, the Gypsy environment and the FDM
tools) are used actively (although still experimentally)
by groups other than the developers--by major computer manu-
facturers, large defense contractors and by various govern-
ment laboratories. In 1980, the DoD Computer Security
Initiative that is under way has the Trusted Computer System
Verification Technology R&D Program as a major thrust aimed
at the practical widespread application of verification
technology for trusted system development. Initial week-long
courses on verification technology are given.

o 1983-present: The DoD Computer Security Center, established
in 1981, issues the "Trusted Computer System Evaluation
Criteria" (32]. It includes verification technology as a

tmUNIX is a trademark of AT&T Bell Laboratories

G-123

major method for satisfying the trusted computer system
assurance requirements for achieving high ratings
according to the criteria. The stabilization of the
major verification systems is under way and it is expected
that they will be production-quality in approximately 1986.
Although Gypsy and HDM currently run on the DEC-10 and
DEC-20 and FDM runs on IBM 360, all will be available on
the Multics at the DoD Computer Security Center for uae by
industry. They will also be ported to run on the Symbolics
3600 which will make them more widely available. A verifi-
cation system is under way four Euclid t I.P. Sharpe and
research on a verifiable subset of Adam has begun.

This chronology indicates that formal software verification has

had the following periods during its history:

1958

8 years: basic theoretical research

1966

5 years: concept formulation for constructive
application

1971

4 years: developmental research and , rly
prototyping

1975

4 years: enhancement, exploratory use and
early application

1979

3 years: more active application

1982

2 years: dissemination and use

1984

The phase from about 1958 to 1966 represents the early work of

basic theoretical research in proof of correctness. During the next

five years, 1966 to 1971, theoretical work continues but the practical

application of the theory is explored. In the late 1960s and early

OAda is a trademark of the Department of Defense.

G-124

1970., several verifiers are implemented. From 1971 to 1975, develop-

mental research on specification and verification languages as well as

- -early prototyping of verification systems takes place. In 1972, three

survey articles appear and by 1974, a textbook on program verification

is published. The phase from 1975 to 1979 is major enhancement to the

languages and verification systems, as well as exploratory use on

small to medium scale applications primarily by the developers. From

1979 to 1982 more active application of formal software verification

is pursued. Since approximately 1982, the technology has been dissem-

inated and used, primarily for critical security applications.

The chronology of formal software verification seems to be fairly
r typical of the process of technology transfer. The underlying theoret- L

*• ical foundation and formulation of concepts, though, probably took a

longer time than is typical.

4.0 SOME OBSERVATIONS

The history of formal software verification provides several

examples of what can reasonably be expected to happen in the process

of transferring software technology into actual use. These are dis-

cussed in this section.

As the chronology illustrates, there was significant and lengthy

"* -(over ten years) activity on the theoretical foundations of formal

software verification before the first program verifier was developed

as a university research project and subsequent Ph.D. thesis. In

fact, theoretical work in the field is still on-going to expand what

program and system properties one is able to formally specify and

verify. It has been a major undertaking to transfer formal software

verification to practical (but not yet widespread) use. There are

several reasons for this:

"G-125

7- -7 -7

. Formal software verification is hard. It is a labor-

intensive activity requiring mathematically sophisticated

users. Many universities that have a software engineering

curriculum do not include verification am a major component

and thus not many students are exposed to verification

technology, particularly at the undergraduate level. -

• After the theoretical foundation for verification was

"sound, several methodologies developed that incorporated

formal verification, namely, HDM, FDM, Gypsy and AFFIRM.

J= As the methodologies stabilized, languages were developed

for specification and implementation to be incorporated

into the methodologies. Automated support tools to

effectively use the methodologies and languages, however,

have lagged behind. Without automated assistance, the

application of verification technology is a tedious and

error-prone activity. The current generation of automated

verification systems are experimental ("prototype"); however,

they have been used in several applications, particularly

for trusted computer system development.

_ Formal software verification is a computation-intensive

activity. Most of the automated verification systems run

as large LISP programs on large mainframes: currently the

DEC-20 (FDM tools run on large IBM hardware). In order for

an enterprise, e.g., government laboratory, computer manu-

facturer or defense contractor, to effectively use the

technology, a major capital investment is needed.

* Formal software verification is costly. Since it has been

] * alabor-intensive and computation-intensive, it has been a

r126

costly process to apply. Cost estimates have ranged from

2-3 times "commercial practice" software development costs,

5 although these estimates often do not take into account

the full life-cycle development costs for "commercial

practice". The benefits of verification technology are

, in ease of maintenance and in correct operation--these are

often difficult costs to measure.

"" Early practical application of formal software verification

did not produce convincing demonstrations of computer sys-

tems that could be effectively used. The KSOS and PSOS

applications tried to use verification technology before it

r Fwas ready for such ambitious projects. The experience on

"these early applications, however, provided invaluable feed-

back from the users to the developers on improvements needed

in all areas: methodology, languages and automated support

toole.

The reasons cited above illustrate some of the hindrances to

Seffective technology transfer. However, other activities in the chron-

ology of formal software verification significantly helped move the

technology from university research toward practical application. In

"the early 1970s, the computer security community focused on a new

. approach to building trusted computer systems that incorporated veri-

fication technology. The DoD recognized a need for convincingly

demonstrating that computer systems can be built to satisfy rigorous

*: security requirements. Verification tachnology is a major technique

for carrying out this convincing demonstration. The emphasis that

DoD has put on solutions to the computer security problem, in general,

and on making verification technology practical, has had a significant

G-127

impact on the transfer of verification technology. DOD has provided

the major funding for the verification methodologies, languages and

tools. A notable exception is Ina Jo/FDM, which was developed by

System Development Corporation using internal funds. It is fair to

say that without DoD taking the lead in pushing verification tech-

nology, it would have remained primarily a university activity and

- "produced mainly theoretical results, rather than prototype system

implementations.

In addition to funding the verification technology developments,

DOD also funded the initial major applications. These were high-risk

projects that a single enterprise would probably not have undertaken.
• . _- _-[..- .,

Although the projects attempted to use verification technology before

it was ready for such ambitious projects (e.g., the language compilers

were not completed, the verification tools were early implementations),

the feedback to the developers was invaluable. The experience also

helped focus the DOD activities on those aspects of verification tech-

"nology that were needed to make it practical and effective.

DoD continues to take the lead in application (and funding) of

verification technology. The activity currently focuses on stabilizing

'-"the major verification systems and making them widely available,

porting the systems to machines that are less costly and, hopefully,

more widely available as well as less computation-intensive (e.g.,

Symbolics 3600), and providing high-quality training, friendly user

interfaces to the systems and good user documentation.

S'- * High-quality training and good documentation on specific systems

is critical. Formal verification is a radically new technology,

particularly for software developers who are not recent university

graduates. This training must be effective in spite of the initial

hostility that new users will have towards the new technology.

G-128

There have also been additional side benefits resulting from the

- *-" software verification research and development. While formal verifi-

cation fully supported by automated interactive tools has been slow in

getting into the software practitioner's daily work world, valuable

side effects have had broader impact in a shorter time period. The

V.. foundations of techniques such as error-free program development,

symbolic program execution as well as rigorous reasoning and "desk

I , checking" of programs during development can be traced back to formal

verification technology. These techniques have become a more wide-

spread part of the practitioner's set of useful techniques for software

developments.

iliL

G-1.29

Sinn

5.0 REFERENCES

1. B. Hartman, M. Taylor and A. Marmor-Squires. "Formal
Verification in the Trusted System Evaluation Process",
IEEE EASCON '82 Proceedings, 1982.

2. M. Cheheyl, M. Gasser, G. Huff and J. Millen. "Verifying
Security", ACM Computing Surveys, Volume 13, Number 3,
September 1981.

3. I. Ianov. "On the Equivalence and Transformation of Program
Schemes", Communications of the ACM, Volume 1, Number 10,
October 1958.

4. J. McCarthy. "Toward a Mathematical Science of Computation",
IFIP 62 Proceedings, 1962.

5. S. Igarashi. "An Axiomatic Approach to the Equivalence
Problems of Algorithms with Applications", U. of Tokyo,
Ph.D. Thesis, 1964.

6. P. Naur. "Proof of Algorithms by General Snapshots", BIT
Volume 6, Number 4, 1966.

7. R. Floyd. "Assigning Meaning to Programs", Mathematical
*I Aspects of Computer Science, Volume 19, American Mathematics

Society, Providence, RI, 1967.

8. E. Dijkstra. "A Constructive Approach to the Problem of
Program Correctness", BIT Volume 8, 1968.

9. Z. Manna. "Properties of Programs and the First Order
PIredicate Calculus", Journal of the ACM, Volume 16, Number 2,
April 1969.

10. C. Hoare. "The Axiomatic Basis for Computer Programming",
Communications of the ACM, Volume 12, Number 10, October 1969.

11. J. King. "A Program Verifier", Carnegie-Mellon University,
Ph.D. Thesis, September 1969.

12. D. Good. "Toward a Man-Machine System of Proving Program
Correctness", University of Wisconsin, Ph.D. Thesis, 1970.

13. S. Gerhart. "Verification of APL Programs", Carnegie-Mellon
University, Ph.D. Thesis, November 1972.

14. C. Hoare. "Proof of Correctness of Data Representations",
Acta Informatica 1, 1972.

15. B. Elspas, K. Levitt, R. Waldinger and A. Waksman. "An
Assessment of Techniques for Proving Program Correctness",
Computing Surveys, June 1972.

16. T. Linden. "A Summary of Progress Toward Proving Program
Correctness", Fall Joint Computer Conference 72, 1972.

G-130

____i_"ai

._. .. * ..* * - *

17. R. London, "The Current State of Proving Programs Correct",
ACM National Conference, 1972.

18. L. Ragland. "A Verified Program Verifier", University of
l iTexas, Ph.D. Thesis, May 1973.

* 19. D. Good, R. London and W. Bledsoe. "An Interactive Program
Verification System", ISI, Marina del Rey, CA, Technical
Report Number 22, September 1974.

20. B. Elspas, K. Levitt and R. Waldinger. "An Interactive
System for the Verification of Computer Programs", SRI,
Menlo Park, CA, Final Report, 1973.

21. C. Hoare and N. Wirth. "An Axiomatic Definition of the
S.... Programming Language Pascal", Acta Informatica 2, 1973.

22. R. Boyer and J. Moore. "Proving Theorems about LISP
Functions", Journal of the ACM, Volume 22, Number 1,

S..January 1975.

23. D. Good, R. Cohen, C. Hoch, L. Hunter and D. Hare. "Report
on the Language Gypsy: Version 2.0", University of Texas,
ICSCA-CMP-10, September 1978. (Earlier version published
in 1975.)

24. 0. Roubine and L. Robinson. "SPECIAL Reference Manual",
SRI Memorandum, August 1976.

25. J. Scheid. "Ina Jo: A Verification Methodology", SDC Report,
June 1979.

i 26. Z. Manna. "A Mathematical Theory of Computation", 1984.

27. P. Neumann, R. Boyer, R. Feiertag, K. Levitt and L. Robinson.
i "A Provably Secure Operating System", SRI, Menlo Partk,

S..February 1977.

28. D. Good (editor). "Constructing Verifiably Reliable and
Secure Communications Processing Systems", University of
Texas, ICSCA-CMP-6, January 1977.

29. R. Boyer and J. Moore. "A Computational Logic", NY, Academic
Press, 1979.

30. S. Gerhart (editor). "AFFIRM User's Guide", ISI, Marina del
= - Rey, CA, April 1980.

! 31. D. Luckham. "Stanford Pascal Verifier User Manual", Stanford
University, STAN-CS-79-731, 1979.

i 32. DoD Computer Security Center. "Trusted Computer System
Evaluation Criteria", August 1983.

G-131

DOD-STD-SDS: The Development of a Standard

R. J. Martin

Georgia Institute of Technology
School of Information and Computer Science

Atlanta, GA 30332

1. Introduction

The following describes the events which have occurred thus
far in the development of DOD-STD-SDS on "Defense System
Software Development". It is important to note that only the
standard is discussed, not the technologies embedded in the
standard. Each technology has progressed along its own
technology maturation path which will include the technology's
"appearance in DOD-STD-SDS.

2. The Need for DOD-STD-SDS

DOD-STD-SDS is being developed in response to a variety of
problems which have been experienced with respect to the -- -

m development and acquisition of embedded computer software. In
particular, the increasing cost of software, the delivery of

U software which is not effective in or suitable for operational
"use, and the extreme difficulty of maintaining software have all

. contributed to the perceived need for a new standard. It is
expected that the use of a joint service standard for software -

development will reduce the cost and increase the quality of
software by allowing industry to implement one set of procedures
"rather than a different set to respond to each service's set of
standards. Furthermore, the employment of consistent
terminology and definitions should reduce confusion and
facilitate cross-fertilization of ideas and techniques.

3. DOD-STD-SDS Chronology

The following lists the major activities and milestones
which have occurred thus far in the development of DOD-STD-SDS.

Sometime prior to April 1979:

In response to problems being experienced in the area of
embedded computer system acquisition and maintenance
(i.e., escalating costs and inadequate software products), -J
the Joint Logistics Commanders establish the Joint Policy

G-132

•• m w " , ' - .. " ',•'. - .. .,' • ,,, :.. . °,"-'.. .• -Y.. - . , --. , .,. . ,, ,r~-- -r- -- r- ,,, , " -,.- .-

Coordinating Group on Computer Resource Management. This
group, in turn,, charters a Computer Software Management
Subgroup to examine policies, procedures, regulations, and3 standards related to defense system software acquisition
and make recommendations for the improvement anO.
standardization of that process.

April 1979:

Monterey Iv the first Joint Logistics Commanders Software
Workshop, is held in Monterey,, CA,, sponsored by the
Computer Software Management Subgroup. The purpose of
this workshop is to review the existing policy and
guidance to determine areas of conflict and redundancy and
to iden 'tify shortcomings. Furthermore, the potential for
the development of joint service standards is to be
investigated. Findings of the workshop are concerned with
the inconsistent use of terminology and definitions across
the services# as well as the wide assortment of standards.
It is further discovered that, in some cases, existin'g
standards include data requirements which should reside in
Data Item Descriptions. Recommendations resulting from
the workshop include:

"Develop a single unified set of acquisition and
development standards for joint service application."

"Define and develop a comprehensive set of Data Item
Descriptions (DIDs) for use in software acquisition."

August 1980:

A contract is let for the development of the Data Item
i Dnesriptions pr t the Monterey I recommendation.

At approximately the same time:

The Rome Air Development Center (RADC) lets a contract for
the development of a Military Standard on Software
Engineering. This is independent of the Joint Logistics
Commanders and the Monterey I recommendation.

April 1981:

The RADC contract is changed. Contractor is now tasked to
modify MIL-STD-1679 (Navy) on "Weapons System Software
Development" MIL-STD-1521A (USAF) on "Technical Reviews
and Audits for Systems, Equipments, and Computer
Software", MIL-STD-483 (USAF) on "Configuration Management
Practices for Systems, Equipment, Munitions, and Computer
Software", and MIL-STD-490 on "Specification Practices" to
incorporate the new Data Item Descriptions. This effort
has now become that recommended at Monterey I.

G-133L

Mid-year 1981"

The decision is made to write a new standard for software
development rather than modify MIL-STD-1679. The new
standard is called DOD-STD-SDS, "Defense System Software
Development".

June 1982:

Original RADC contract expires. It is replaced by a
contract which includes, in addition to the previous
effort, the completion of the development of the new Data
Item Descriptions.

June - August 1982:

The first version of DOD-STD-SDS, the updated MIL-STD's
1521A, 483, and 490, and the new Data Item Descriptions
are released for government and industry review.

October 1982 - January 1983:

Over 5000 comments are received on the document set.
Comments range from "change word x to word y" to "start
over". Specific changes to DOD-STD-SDS recommended in the
comments include: streamline DOD-STD-SDS, require DID
preparation, incorporate Ada, simplify software
architecture, discuss firmware, emphasize commercial and
reusable software, clarify the relationship of the
software life cycle to the system life cycle, and modify
definitions.

January - May 1983:

Contractor analyzes comments and revises document set.

May - July 1983:

Joint Service/Industry Review Meetings are held.
Representatives of major industry organizations
participate in a special review meetings which include -
lengthy discussions with contractor and sponsor concerning
resolution of issues and response to comments.

August 1983:

Updated versions of the Military Standards and Data Item
Descriptions are available. Another meeting is held with
one industry organization which is especially concerned
about the new documents.

G-134

December 1983:

The "final" revised draft of the document is complete. Of
42 issues raised, 24 are totally resolved; 10 are

l .partially resolved; and 8 are outstanding.

January - March 1984:

Formal review and coordination with government and
industry is conducted.

July - December 1984:

Comments from formal coordination are incorporated in
standard prior to release.

January 1985:

DOD-STD-SDS is available for use. Work begins immediately
to resolve outstanding issues and incorporate lessons
learned from initial applications.

4. Summary
The following depicts the phases of the history of

DOD-STD-SDS.

1979 -- +

+ one year concept formulation

1980S~L

+ two years initial development

1982

+ three years review and enhancement
prior to initial release

1985-+

+ review and enhancement continues

The most striking aspect of the above timeline is the
lengthy review cycle. This reflects the fact that if a
standard is to be accepted and put into effective use, it cannot
be imposed arbitrarily. The potential impact on the
organizations both within and without the government must be
carefully investigated. This includes an investigation of the
maturity and appropriateness of the mandated technologies.

-"G-135

* " **. - , -- -- "'.. .-

* 5. References

Briefing Slides from the Joint Service/Industry Review Meeting,
24 May 1983. Prepared by Dynamics Research Corporation.

DOD-STD-SDS, Defense System Software Development, 31 August
1983.

Final Report of the Joint Logistics Commanders Software

Workshop, Volume I, 01 October 1979.

Private Communication with L. Cooper, 26 June 1984.

Private Communication with R. SanAntonio, 17 February 1984.

G-136

STRUCTURED PROGRAMMING:
A TECHNOLOGY INSERTION CASE STUDY

Samuel T. Redwine. Jr.
r.. May 1984

1.0 HISTORY

if a technology can be said to trace from a single speech or paper, then for
structured programming that paper is Edsger Dijkstra's nProgramming Considered
as a Human Activity"v given at the 1965 IFIP Congress in New York [1]. While it

2 contained virtually all the elements of structured programming, it received much
less attention than his 1968 letter to the editor in Communications of the ACM more
dramatically titled 'GO TO Statement Considered Harmful' [2]. (In which, by the
way, he noted that concern about the GO TO statement had been discussed in
meetings at least as far'back as 1959.)

Despite his prior speech and publication in the U.S., the transfer of the concept
* into the U.S. having the largest impact occurred at an October 1969 NATO Science

Committee-sponsored conference in Rome, where Harlan Mills and others from IBM
L Federal Systems -- there to report on their "Super-Programmer Project" [31 -- heard

Dijkstra [41 and carried his ideas home [5]. They proceeded to elaborate and use the
ideas on real projects, and report on the results, for example the New York Times
Information Bank project on which several papers were published in 1972 [6, 7].
Following these projects, IBM became a major proponent and disseminator of
structured programming along with other so-called modern programming
methodologies. (To give corporate credit where due, one might note that Dijkstra
has been an employee of Burroughs since 1973 although still based in the
Netherlands.)

The year 1972 also marked the publication of the first book-length treatment
of structured programming by Dahl, Dijkstra, and Hoare [8]. Datamation had a
laudatory special issue on structured programming in December 1973, and ACM
Computing Surveys had a special issue in December 1974. *4 slim textbook was

G-137

I I'.

published by Wirth in 1973 [91; the first traditional undergraduate text was
published in 1975 [101. The first language-specific text for the most widely-used
programming language was McCracken's *A Simplified Guide to Structured
Programming in COBOL" in 1976 [11].

By 1977, when after 12 years the next IFIP Congress was held in North America,
a lot had been written about structured programming. But a survey of 33 large
corporations in Los Angeles showed that 'only three had fully implemented
structured programming along with a well-defined set of procedures and
documentation standards for its use.' Another 11 "were still experimenting with
and evaluating this technique' [121. So 14 of 33, or 42 percent, might be said to be
using it at all. (This survey defined structured programming as essentially structured
coding, but 42% also reported using top-down design). A 1979-80 survey in
Dallas/Fort Worth showed 40 of 51 (with 12 non-responsors to this question) or 63-
78 percent using "structured programming in high-level languages' atall [13).

2.0 DISCUSSION

Structured programming is probably the most famous software-related
technology other than high-level languages. It has had virtually universal support in
the professional literature and the active support of the largest corporation in
computing. Yet it took 12-15 years before half of practitioner organizations had
even tried it. Anecdotal evidence suggests that even today, 19 years after the
original paper, many organizations have not systematically adopted structured
programming and a number do not use it at all.

Mills has suggested one of the problems was its origin in the academic
community and the slow transfer out of that community [14]. Ed Yourdan has
suggested that 'timing" and "packaging' contributed to the delay [15]. These and
other aspects such as its essentially mental (vs. tool or product) nature probably all
contributed. Part of the resistance may have been because some widely-used
programming languages, such as FORTRAN, were awkward to do structured
programming in.

G-138

The length of time between the first paper and the first text book was eight
! .iyears; this time might have been easier to shorten than the next six years before a

majority of organizations had at least tried it. In addition, the yet another six years
or so until it was firmly established in the great majority of organizations might also
have been possible to accelerate. Certainly, possibilities for more rapid progress
would seem to have existed in all stages.

G-3

.•;;•-

"•:lllI 'r

-- ,,/--" •

4K

• ., I'I~ iI '

llI 39
III

REFERENCES

"[11 E. Dijkstra, "Programming Considered as a Human Activity," Proceedings
of 1965 FIP Congress, North-Holland, 1965, pp. 213-17.

(21 E. Dijkstra, "GO TO Statement Considered Harmful," Communications of
itheACM, Vol .No. 3, March 1968, pp. 147-48.

[31 J.D. Aron, "The 'Super-Programmer Project," in Buxton, Naur, and
Randell (eds.), Softwate Engineering, Concepts and Techniques, Litton
1976.

[41 E. Dijkstra, "Structured Programming," in Buxton, Naur, and Randell.

[51 H.D. Mills, Software Productivity, Little, Brown, and Co., 1983, p. 2.

161 F.T. Baker, "Chief Programmer Team Management of Production
Programming," IBM Systems Journal, Vol. 11, No. 1 (1972), pp. 56-73.

1-•[-

[71 F.T. Baker, "System Quality Through Structured Programming," AFIPS
"Proceedings of the 1972 Fall Joint Computer Conference, AFIPS Press,
"1972, pp. 339-44.

[81 O.J. Dahl, E. Dijkstra, and C.A.R. Hoare, Structured Prog-amming,
Academic Press, 1972.

[9] N. Wirth, Systematic Programming: An Introduction, Prentice-Hall,
1973.

[101 C.L. McGowen and R.J. Kelly, "Top-down Structured Programming
Techniques," Petrocelli/Charter, 1975.

[111 D. McCracken, "A Simplified Guide to Structured Programming in
COBOL," John Wiley & Sons, 1976.

[121 J.B. Holton, "Are the New Programming Techniques Being Used?"
Datamation, Vol. 23, No. 7, July 1977, pp. 97-103.

[131 L.L. Beck and T.E. Perkins, "A Survey of Software En ineering Practice:
Tools, Methods, and Results," IEEE Transactions on Software Engineering,
Vol. 9, No. 5, September 1983, pp. 541-561.

G-140

SVAM/12 January 1984

software design & analysis, inc.

-* 1670 Bear Mountain Drive
Boulder, Colorado 80303

"303 499 4782

The Magic Number Eighteen Plus or Minus Three:
A Study of Software Technology Maturation

William E. Riddle

ABSTRACT:

12.• It is commonly thought that 10 years is needed for technology to pass from
its initial conception into wide-spread use. In the process of gathering
data to argue the need for a technology improvement program, we investi-
gated the technology maturation process for three environments supporting
software development. Our hypothesis was that more than 10 years was
needed; our guess was that the period would be more on the order of 15
years; and we found tnat it takes on the order of 18 years for systems such
as these to mature. Technology maturation time lines for the three systems

, *.. are presented and some comments are provided on what facilitates and inhi-
bits software technology maturation.

L_ This report was prepared as part of work performed for the Department of
Defense STARS Joint Program Office by the Computer and Software Engineering

-.[Division of the Institute for Defense Analyses.

G-14 1

.." .• , •_.._.r ...' * ""• •••;• " •- ,•'•i . ', , * i • •• • i•••- i .. -

. I I _--r ---- - ,- ,

"1. Introduction

It is coammnly thought that it taken 10 years for technology to mature
from its initial conception to its wide-spread use. While it is quite hard
to pin down exactly when an idea emerges and when it is in wide spread use, -
this has seemed to be the period for the maturation of technology such as
structured programring and Pascal. As a (glib) explanation, it has been
noted that this is a typical period of time for a advanced-degree luniver-
sity student to graduate, take a job and get into a position in which he or
she can affect the technology used in tiaeir organization.

In the process of gathering data to argue the need for a technology
improvement program, we investigated the technology maturation process fox
three environments supporting software development. These three systems
were: the Software Requirements Engineering Methodology (SRE4) system, the
Unix* operating systam, ard the Smalltalk-80** system.

Our hypothesis was that more than 10 years was needed and our guess
was that the period would be more on the order of 15 years. We found that
"it has taken on the order of 18 years for systems such as these to mature
from the initial erergence of underlying concepts to commercialization of a
system embodying them. Technology maturation time lines for the three sys- .
tems are presented and discussed in Saction 2.

Partially, the increased length of time is nreded because we have con-
sidered large systems that consolidate several technologies rather than the
individual technologies themselves. And partially, it comes from consider-
ing the period to extend up to commtercialization. But, there are other
reasons that this period is more lengthy than our intuition might have us
believe - these are discussed in Section 3.

2. The Software REuirements Enineering methodology System

SREM was developed by TRW, Huntsville, under the sponsorship of the
Army's Ballistic Missile Defense Advanced Technology Center (BMDATC).
Active work was begun in mid-1973 and the first version of the system was
released in 1977. Since its initial release, SREM has matured past the
prototype stage and has been transferred to several government, academic

"- i and industrial organizations. It has not as yet been fully comnercialized.

2.1. A Short Synopsis of SPBI

i 'SRi is a method for developing a formal specification of the data
processing requirements for complex, possibly concurrent systems. It pro-
vides a set oi rules, guidelines and procedures for capturing the require-
ments in a formal notation called the Requirements Statement Language
(PSI). RSL is based on a formal, graph model of data manipulation and pro-
vides a medium for describing the required processing in terms of the. -
system's (output) response to various (input) stimuli. RSL allows the
specification of performance as well as functionality characteristics.

* Unix is a trademark of AT&T Bell Laboratories.

** Smalltalk-80 is a trademark of Xerox Corporation.

G-1-42

The use of the SREM method is supported'by automated tools provided by
the Requirements Engineering and Validation System (REVS). The REVS tools
allow the syntactic analysis of RSL descriptions, the construction of a
requirements database, the analysis of some consistency and completeness

* characteristics, the development of a simulation model of the system
"describing by the requirements, and the analysis of simulation results. 17

SREM is one part of a larger system, called the Distributed Computing
Design System (DCDS), that covers the software development life cycle from

- i -! the pre-software activities of system requirement definition to the
detailed design of the distributed software. The other parts of DCDS are
not treated in this paper.

- 2.2. A SREM Chronology

The activities and milestones pertinent to tracing the maturation of
SREM into use on "real" projects are:

-ipre-1974: Research work on the formal definition of software require-
ments is carried out at various locations. In particular, work at the
University of Michigan on the ISDOS system demonstrates the feasibil-
ity and desirability of using entity-attribute-relation concepts in
capturing requirements in a database that can be processed to produce

"* ihreports and help gain insight into the consistency and completeness ofrn
the requirements.

- pre-1974: Work on automated support for the design, coding and testing
of defense application systems is sponsored by BMDATC. In particular,
a System Evironment and Threat Simulator (SETS) is developed. It
uses the stim~ulus-response definition of interactions among systems as
a way of abstractly specifying the system so that simulation can be
used to investigate the system's properties. Many of the concepts and
procedures that later show up in SREM are manually used during this
period.

- late-l73 and early-1974: The interest at BMDATC expands to supporting
the rigorous definition and validation of software requirements, in
particular performance requirements. The SREM project is initiated.

- August 1974: TRW, Huntsville, delivers a review of existing require-
ment definition and validation techniques and a plan for developing
the SREM system.

- October 1974: A specification of SRE4 and a set of requirements for

RSL are finalized.

- March 1975: A plan for testing* the SREM system is produced.

A 3esign for the REVS system does not appear for another seven months,
so usage up until now, and the usage npecified in this test plan, is
presumably either manual or with the support of prototype tools.

,;- S~G-143

-- July 1975: The concepts underlying SRW'1 and RSL are presented at a

conference on formal specification.

-- October 1975: A REVS design specification is delivered.

-April 1976: RSL and the underlying graph model of computation are-
presented at a conference.

-,July - September 1976: Manuals are provided for using REVS, maintain-

ing REVS, and using the SRD4 method.

- October 1976: The Software Development System, of which SRM is a
part, debuts at the 2nd International Conference on Software Engineer-
ing. At this time, SRflI is operational only on the Texas instrument
Advanced Scientific Computer (TI ASC) and one moderate-sized system
has been attacked as a proof-of-concept demonstration of both the sys -
temn and the method.* SRE)1 consists of 40,000 executable statements in
Pascal and 10,,000 lines of Fortran code re-used from the ISDOS system._

-- early 1977: SREM4's initial release is available. SREM is ported to a
* TI ASC at another government installation.

-- June 1977: The results of experimental usage of the SRIE4 system by TRW
Hi . are delivered. This mars the end of SREM as a research project.

-- July 1977: Porting of SREM to BMDATC's CDC 7600 with on-line graphics
capabilities is completed. Tuning of the system to take advantage of
the machine's features results in a 20:1 increase in per formance.

-- November 1977: A three-week training course is provided for practi-
tioners from four companies and one government organization. Prior to

.. . • :- "b

this, training has been done, with only a modicl of success, by pro-
viding the documentation and, with considerably more success, by pro-
viding on-the-job-style instruction.

,- by November 1978: SRE6 has been transferred into other parts of indus-
try with its successful porting to a CDC 7700 and a Cyber 74/174 TSS.
By now it has been used on 13 "real" projects (eight of them within
T.W) and the use has been to either validate existing requirements or
to develop an initial set of requirements. The projects are all large
scale (estimated code sizes for final products are 20-200K) and they
span a variety of applications (operating systems, information manage-
munt, man-machine interaction, data reduction, distributed processing,
etc.), many of which were not in the class of problems originally -

envisioned for SRB4.

b. ey November 1980: SRE�' has been ported to only one more installation,
an interactive Cyber 174/175 at a government organization. A new
release has been prepared that has factors of 10 to 100 improvement in
speed - what used to cost in the hundreds to thousands of dollars for" '
computing resources is now costing in the tens of dollars.

G-144

. - ;- - w..-- :: :

-- by moetina in 1981: SREM has been ported to the VAX 11/780. .

-by October 1982: About 60 copies of the VAX version have been distri-
j ° buted.

- during 1983: A SREn users' group is formed with about 20 organizations
involved.

-- by late 1983: A two-year independent study of SREM has been completed
to evaluate its applicability to C31 systems with an emphasis on how
well it handles systems with man-machine interactions, large data-
bases, and distributed networks of computers. Part of this involves
encoding, in RSL, the requirements for a system that already has a
515-page English-language requirements document. This validation
uncovers about 100 errors in the thought-to-be-correct requirements
and requires about 5.6 person-years of effort over 20 months. Several
problems are uncovered: SREM cannot easily handle parallel and dis-
tributed processing situations; poor syntax error handling and other
problems create some usability problems; automatic invocation of some
analysis capabilities leads to wastage of human and computer
resources; and the training courses are considerably flawed. (The
DCDS project is addressing these problems and later versions of SREM
will have these problems corrected.)

-- by January 1984: About 80 copies of the VAX version of SRh7I have been
- distributed and about 20 additional requests for SREM are in process-

"ing. The majority have gone to industry, a few have gone to govern-
ment installations, and one-third have gone to academic installations.
20-30 training courses based on the VAX version have been delivered.
The database portion of the VAX version has been re-programmed in Pas-

-_ cal with a resulting improvement in the database portion of about
80:1. Other improvements have led to an overall improvement of about
16:1 over the initial VAX version. SREM is being used on at least six
TRW projects both at Huntsville and at Redondo Beach; on some of these
projects it was a management decision to use SREI even though its use
was not required. SREM is also being used outside TRW.

2.3. The SREM Technology Maturation Process

Within this chronology we can find the roughly-defined historical
periods depicted in Figure 1.

G-145

iiiiL

1968

5 years: basic research and concept formulation

1973

4 years: developmental research and prototyping

1977

3 years: enhancement and exploratory use

19815
1 year: implementation of more readily available 9

1981 and better performing version

at least 3 years: continued enhancement and more
extensive exploratory use; eventual
comlercialization

. - -- * - ;'

Figure 1: SRE?4 Technology Maturation Time Line

As is true of most research situations, it is hard to identify exactly
when the ideas started to emerge. Many of the concepts used in SRM were
"developed prior to the "official" start of the research in late 1973 and
eatly 1974. The 1968 date is chosen since this is roughly when both the

*ISDOS and SETS projects started and these projects established some of
* SREM's underlying concepts.

The period up to 1977 is fairly typical, in content and duration, of a 7
research project that has prototyping and proof-of-concept as its aim. The
activity from 1977 on,, however, seems a little slow. The early distribu-
tion of SREM was hampered by it being implemented on the TI ASC and the
decision to port it to other super-level computers which typically have
very individualistic operating systems which complicate the porting pro-
cess. Had the decision, made roughly in 1980, to port SREM to a more
widely available and obtainable computer been made two or three years ear-
lier, the post-1977 chronology above would have been shortened, but prob-
ably not by more than a year.

SREM has not yet been commiercialized. it is available, as are train-
"ing courses and materials. And people are becoming attracted to it, at
least to consider am an aid to developing the requirements for a system
being built under goverment contract. But a fully conuercial version is
not available, and there is no active marketplace of sellers or buyers*.

*if our est mate i's corect, then SRen will not reach this point until

G-146

ii ~r

HI

3. The Unix Operating igo

Th¶e Unix Operating System was dev'eloped at Ball Labs by Ken Thompson
in 1969 in response to dissatisfaction with the Maltics Operating System.
It retained many of the basic concepts included in Multics but was imple-
mented on a small mini-computer, the PDP-7. It was intended to be both
highly supportive of the programming process and easily extended to include
new capabilities.

in its 15-year history, Unix has become widely used both within and
outside Bell Laboratories. The Unix community that has developed over the
years includes not only users, but also operating system developers and
researchers who find it valuable as a base for now operating systems and
software engineering envirorments as well as an object of study itself.

-, - ;3.1. A Unix Chronology

The activities and milestones pertinent to tracing the maturation of
the Unix Operating System into widespread use are:

- late 1969 and 1910: The initial version of the Unix Operating System
is implemented on a PDP-7 mini-computer.

-- by 1971: The initial version is also operational on a PDP-9.

-- by 1973: Two more versions have been implemented, one for the PDP-
11/20 and the other for the IOP-11/40 and PDP-1l/45. The latter ver-
sion has a size of 45,000 bytes. The user community for the latter
version numbers 72 and this version exhibits very high reliability,
being available about 98% of the time.

Ji -- during 1973: Work is begun on the Programmer's Workbench version in
an attempt to make the system useful for large projects carried out in

a computing center envirorment. The previous versions have been more
oriented towards small, cohesive groups of technology-oriented users
and new facilities are planned for remote job entry, source code con-
trol, and testing on a variety of target systems.

.. sumwer 1973: The system is re-written in the C language. The size
increases considerably (by about 33%) but the enhanced portability and
maintainability are deemed worth it.

-- October 1973: The system debuts to the research community at the Sym-
posiur on Operating System Principles. R.

-- by 1974: Unix has been installed at 40 locations within Bell Labora-
tories. Its primary uses are: word processing, trouble data collec-
tion and processing, and order processing -- applications that are
relatively far from the original intent of support fc.' program

IL development.

I 1986, plus or minus three years. It will be interesting to see if this
holds true.

I L G-147

-- last half of 19701s: Considerable enhancement of the system is car-
ried out at the University of California at Berkeley. This work leads
to a stream of development that continues to be separate and parallel
to the work done within Bell Laboratories.

-- mid-1978: A collection of papers appears as a special issue of the
Bell System Technical Journal.

by 1979: Unix has been installed on over 2300 computers within Bell
Labs as well as elsewhere in industry, Government and academia.

-- by 1980: Unix is available for all computers in the PDP-11 family,
for the Vax 11/780, and for the Interdata 8/32.

- -aby 1981: There are over 1700 Unix installations within colleges and
!!universities. it is estimated that 90% of university computer science

departments use Unix.

-in 1981: A company, Unisoft, starts to provide Unix implementations
for 32-bit micro-computers.

November 1981: Unix System III is announced along with a uniform
Sipricing policy. Special licensing arrangements for added-value situa-

* mtions based on 32-bit micro-computers are also announced.

3.2. The Unix Technolog Maturation Process-

It is difficult to define historical "periods" with certainty, but the
Unix chronology exhibits the rough pattern depicted in Figure 2.

G-148

I . 0

m4re than 5 years: basic research and concept
formulation

U, 1967 0

4 years: developmuent and prototyping of underlying
concepts

1971 ,2 years: transfer to several other hosts

1973

k-1 8 years: extensive exploratory use and enhancement

1981

at least 3 years: further dissemination and use

SiiFigure 2: Unix Technology Maturation Time Line

Much of the heritage of Unix lies within the general operating system
research of the 1960's and, in particular, the Multics Operating System.
we can thus consider the operating system research of the mid 1.960's as--
contributing to the development of the basic concepts underlying Unix.
And, the Multics system can be considered to be an early prototype that
helped in investigating the efficacy and compatibility of many of the con-
cepts in Unix.

Unix enjoyed a relatively long period of prototypical use. It is dif-
ficult to say when it became an actual product and its use was more Seri-
ous" than prototypical. It was constantly under-going improvement and
enhancement and so the achievement of a static point cannot be used in

_* determining the end of prototypical use and the beginning of it being a

L real product.

Unix was available between 1973 and 1981 for a variety of machines and
under a variety of licensing arrangements. The use during this period was
heavily exploratory in nature, and Unix was still really in development as

G-149 _

a commnercial product. The appearance of Unix System III in 1981 marks the -

beginning of the treatment of Unix as a "product" by both the vendor and
the marketplace.

Thus, the announcement of Unix System III is used as the dividing
point between prototypical and "real" use. This is not because of the
nature of this version or the realignment of licensing arrangements that
took place. Rather, it is because this announcement coincides with the-

- - maturation of a rather extensive marketplace surrounding Unix. About this
point in time training courses were be"ing commonly available, texts on
the system were appearing, service bureaus oriented towards Unix systems
were established, alternatives to the Bell implementation were becoming

* ~common, and several companies were marketing systems hosted on Unix. Thus,
the 1981 date marks the beginning of Unix as a n element of some considerable
strength in the marketplace as opposed to being just an available system
having a dedicated following.

This makes the maturation period for Unix on the order of 20 years.
Maybe this is a bit on the long side because of our decision to use the
System III announcement as the commnercialization point. But it is also
true that the evolutionary developmient scenario that is one of the hall-
marks of Unix tended to extend what we have characterized as the prototyp-
ing and exploratory use phases. And it also seems true that the corporate
decisions made within Dell and AT&T, during the period of divestiture,
tended to slow down the commercialization of Unix.

4. The analitalk-80 System

The &iialltalk-80 System is the result of a number of inter-related
projects within Xerox Palo Alto Research Park. The idea for a personal,
electronic "notebook" emerged in the mid-sixties and was married with the
concept of objectý-oriented prograimming at the beginning of the seventies.

* Other projects within Xe0.ox have taken these concepts, individually and
Stogether, in other directions.

* it seems fair to say that the world is fairly attracted to systems
*with bit-mapped displays and convenient interaction mechanisms like 'ýmice".

It also seems fair to say that the jury is still out on the concept of
object-oriented programing. The former tends to heighten al ltalk-80's -

comm-ercial stance and the latter tends to detract from it. But, in sum,
this system has made it to the fully commiercialized point in its history.

4.1. A lalltalk-80 Chronology

The activities and milestones pertinent to tracing the developiient and
maturation of the sioalltalk-80 syatme are:

--o by 1968/1969: The concepts underlying a personal, pocket-sized infor-
mation system are developed by Alan Kay in the course of his masters
and Doctorate work.

l by October 1972: A first version of s tealltai k is prepared as a 1,000
line Basic program.

G-150

- by late 1972: The first major version of Salitalk, Salltalk-72, is
prepared by re-developing the Basic version in assembly code on a Data .
General Nova computer. This implementation is moved to the Xerox Alto

r ~computer as soon as possible. This initial version is used by about
12 people over the next four years.

- by 1974: Several improvements have been made in the Smalltalk-72 -I
* interpreter to enhance the performance of the system.

-. .by 1976: The second major version is prepared by making improvements
to the Smalltalk language resulting in Smalltalk-76. This version is
used by about 20 people on a daily basis and occasionally by about 100
people.

, ---- by 1977: Much of the Smalltalk-76 system is ported to a suitcase-
sized computer.

- -- by 1980: The third major version is prepared by a further re-design
of the &nalltalk language. -q

: ---- during 1981: The system is provided to four companies and one univer-
"� sity who have agreed to try to port the system to other computers.

The system has been split into a Virtual Machine and a Virtual Image
that runs on the Virtual Machine. The companies and university have
already received a specification of the Virtual Machine and have
implemented it on various machines. Tapes of the Virtual Image are ,
provided for them to get running on their Virtual Machines and a
workshop is held to trade experiences in developing the Virtual
Machines and porting the Virtual Image.

n-- in mid-1983: Smalltalk-80 makes it to "commercialized" status with

Sits announcement as an available product.

4.2. The Smalltalk-80 Technology Maturation Process

The historical periods in the lifetime of Smalltalk-80 are indicated
in Figure 3.

G-151

• . ,• . o. • , • . • . . i j -. . . , . . . ,: , , , - ,, , ,, - . •. s , • r w% .. r, w "

more than 5 years: basic research and concept

formulation

1972

4 years: development and prototyping of underlying
concepts

1976

5 years: further development and prototyping

1981

2 years: preparation for release as a product

1983

at least 1 year: marketing and sale

Figure 3: Smalltalk-80 Technology Maturation Time Line

The Smalltalk-80 system underwent a more organized and disciplined
commercialization process than did Unix [10]. This process not only
attended to getting the system transferred to other machines, but also
served to get critical review from outsiders. Without a doubt, this was a
much more efficient and effective procedure than the relatively haphazard
enhancement and exploratory use phase that Unix went through. It has not
only led to (marginally) faster maturation (roughly eighteen instead of
twenty years) but also to a tiore technically coherent product.

5. Some Observations

The prototype version of even a part of a full life cycle software
engineering environment can require massive computational resources. Large
databases and friendly user interfaces can demand a base computing facility
that is considerably more than one would expect the production version to
run on. This is not to say that software engineering environment develop-
ment plans that require a reasonable amount of computational resources can-
not be devised. Rather, it indicates that careful, technically-accurate -
planning is needed to keep the computational resource requirements to a
reasonable level.

G-15 2

The resources were kept to a minimtumi~n the Unix and Smalltalk-80 ini-Stial implementations. In both cases, this requirement was a primary one
for the project. But these systems were also intended, at the beg inning,
for use by an individual on smail projects, and this helped considerably in

* keeping the resource needs low. SREM's orientation to use by a team of
people working on a large-scale software system led to it starting with
high computational resource needs.

* V.

Using large amounts of computational resources to get the prototype
out quickly has to be traded off against the subsequent slowing of technol- 7
ogy maturation due to complications in porting the system. In fact, it my
be best not to waste time in porting the prototype and instead move
directly to re-implementation (with as much re-use as possible). The SRoe
experience indicates some of the problems but does not decide the issue.
The Unix and inalltalk-80 approaches were to much more heavily rely on re-

implementation.

"Acceptance will depend on meeting some thresholds that are not known
until transfer is attempted. For example, the cost* of requirements
analysis with the initial version of SREX was roughly the same as the bur-
dened cost of another analyst (6). This would som to be a reasonable
incremental cost for the benefit obtained. But, SREM was not readily
accepted until this cost was reduced by one or two orders of magnitude .
there seems to have been an unarticulated threshold concerning what the
cpability should cost and acceptance was delayed until this expectation
was met. Uni-xa RIdSmalltalk-80 did not seem to suffer problems in this
regard, probably because they were heading toward a known domain and met
the cost expectations held from experience rather than supposition.

Another milestone. that niust be met before acceptance of a system out-
side of its development community is use on a real project through
delivery. This creates a real problem for a system, like SREao, that

.- .. addresses the pre-implenentation phases of large project -- there can be a
considerable time lag (two to four years) before this milestone is met**.
The situation is a bit more favorable for systems like omalltalk-8u and
Un~ix which address primarily the later parts of the software life cycle.
But they can suffer time lag problems also. *in government contracting, any
tools to be used in the later parts of the life cycle must be specified

i* before the project begins. That can mean a tao- to four-year time lag
between the. decision to use a tool or system and its actual usage.

The time and resources required for distributing a system and respond-
ing to queries from potential and current user's will be more than anyone
would reasonably guess.t The SREM experience was that at least as much time
"and resources were needed for distribution and "fire-fighting" as were

* needed for enhancement (6). This "fact" is frequently missed in planning

.While o ~its pnoceno s most easily discussed in terms of the dollar
cost of using a capability, it is also related to the factoRrs of response
time and turn-around time.

"iB This time lag can be circomvented somewhat. For example, the SRE Sys-
tem can be used in requirements validation, rather than generation, maide
out of a project's critical path.

G-153

Liibtentedeiint s oo rsse n tsata sg..

1 17, 4

out the scenario for system development and estimating the resources
required and technology maturation can be considerably slowed as a result.

Under current goverment and industry practices and regulations, tech-
nology maturation will be hampered by rights issues, For example, SRD4 is
government-owned and therefore in the public domain. The cost of making a
production-quality version of $R1E4, to enhance its acceptability and there-
fore the extent to which it will permeate the software development commun-
ity at large, will probably not be bornr by private iindustry because of its
public-domain status. TRW has funded the improvement of SREM's performance
to be able to use SRE14 internally. Without government funding of the
development of a production-quality version, a technology such as SREM will
be an orphan without any visible means of support for the activities criti-
cally necessary for reasonable, let alone wide-spread, dissemination.

innovative attempts to garner the resources for developing
production-quality versions may be a way to temporarily improve the situa-
tion but these generally run into legal snags. The SREM users' group is
one such attempt. And, while it did not have the intent of developing
production-quality versions, the Smalltalk-80 "exercise" of transferring
the system to other machines (101 contributed greatly to this end.

Extensibility of the system can greatly facilitate its transfer. For
example, many of the transfers of SREM would not have been possible without
the SREM capability to extend the RSL language while retaining the ability .
to analyze the new constructs with the existing tools.

Freedom to tailor the use of the automated tools is also important.
Forcing users to employ the tools in a prescribed order is certainly impor-
tant for enforcing a development method; but it can lead to a negative
reaction even if the users are not trying to violate the method. Perhaps
the users will want to use the individual tools in a different way without
violating the method. Or perhaps they will find that enforced usage leads
to unnecessary overhead when the method is used in their project with their
management practices even though they are not violating the method. The
latter situation was the case in the independent evaluation of SREM corn-
pleted in late-1983. It was evidently generated by providing, in REVS,
only a small number of large, monolithic tools rather than decomposing the
tools into their constituent parts and allowing tailored use of the indivi-
dual tool parts.

The independence of Unix from any particular development method was a
definite contribution to its success -- since it could be rather freely
molded to the practices of any user, it was more easily accepted. And the
resulting large community of users meant that there was an extensive source
of additional tools for importation and use.

This would not, however, have worked as quickly 3nd extensively
without the underlying "small is beautiful" philosophy of Unix. The Unix
tools are really tool parts that one can easily coxbine through the avail-
able mechanisms of piping, job control programs, and tool embedding. As a
result, new tools, that either provide a new function or deliver an exist-
ing function in a now way, can be easily and quickly prepared.

G-154

Another factor in the relatively quick acceptance of Unix was the -

presence of tool-building tools such as lex and yacc. These allowed new
tools and tool parts to be easily and quickly developed and thus the set of
available materiel could be easily extended and molded to new applications
and new user communities.

As with most new technologies, acceptance of the sort of system talked
about here is critically dependent on their meeting an already perceived .•
need. The acceptance of Unix was greatly enhanced because it filled a
recognized, felt need - there was very little need to market it. SREM is
considerably toward the other end of the spectrum - only recently has the
need for rigorous requirements definition and validation capabilities been
fairly widely acclaimed. Smalltalk-80 sems somewhat in between -- open
questions about the value of object-oriented programning will probably have

- a slowing affect on its acceptance.

In this regard, it is interesting to note the SREI experience that
there is an increasing willingness to try new technology [6]. Partially,
this comes from an increasing awareness of the value of pre-implementation
tools such as offered by SREM. But there are several other factors: the
use of advanced software development technology is starting to be required
as part of some government contracts; the computing resources needed for
using new technology is starting to be more countonly available, sometimes
even at a practitioner's desk; and it is becoming more comnon for the asso-
ciated acquisition and training costs to be moved into an organization's
overhead expenses rather than charged against individual projects.

Finally, high-quality training is critical. For radically new tech-
nology, this training must accomoodate the fact that the learning curve can
initially halve the productivity of the technology's new users [5]. It
must also be effective in spite of the initial hostility that the new users
will have towards the new technology.

6. Acknowledgements

Sam Redwine first suggested to me that the period needed for the
maturation of software support environment technology was more like 15 to
20 years than 10 years. His c-ntinued interest and his help in the _.

development of this material was very beneficial.

Mack Alford, Chief Scientist at TRW Huntsville and father, midwife and
mentor of the SREM system, was also very helpful. He provided me with many
of the insights related in Section 3.

G-155

7. References

5'II

The study of SREM as an example of software technology maturation was
facilitated by the availability of frequent periodic status reviews and *

evaluations. Much of the $REM4 literature of the 1979's is available in a
edited collection of papers prepared by DMDATV [11. This collection pro-
vides some early commtentary on the SREM experience,, including a 1978 review-
of the first two years of activities (2). The next two years of activity
are reviewed in (31 which includes a synopsis of some independent assess-
ments and activities. Further information was provided as pert of a 1982
program review (4]. An independent assessment of the maturity of SREM is
available (5) as a result of a two-year study of SRIE4 applicability to Comn-

* mando Control, Communications and Intelligence (C31) systems.

The literature relating Unix experiences is much more sparse. The
original article on Unix (7] provides some status data and this is updated
in•aimorerecentpaper (8].

* The Smalltalk-80 experience is nicely captured in one of the recent
books that have appeared on that system [9]. of particular note, with

* respect to the issue of technology maturation,, are the articles by Goldberg
[0 (0 and Ingalls 1).

*1. C. G. Davis and C. Re Vick. Ten Years of Software Engineering. BMD
Advanced Technology Center, Huntsville,, Alabama. 1979.

2. M. W. Alford. The Software Requirements Engineering Methodology
* (SREM) at the Age of Two. Proc. Compsac78, Chicago, November 1978, S

pp. 332-339.

3. M. W. Alford. S5oftware requirements Engineering Methodology (SREM) at
the Age of Four. Proc. Compsac80, Chicago, October 1980, pp. 866-874.

4. Distributed Computing Designi System Quarterly Review. TRW, Hunts-
ville, Alabama. October 1982.

5. P. A. Scheffer, A. H. Stone, and W. E. Rzepka. A Large System Evalua-
tion of SREM. Proc. 7th Intern. Conf. on Software Engineering,
Orlando, Florida, March 1984.

6. Me W. Alford. Private communication. 27 January 1984.

7. D. M. Ritchie ard K. Thompson. The Unix Time-sharing System. COina.

ACM, 17:7, July 1974, 363-375.

8. Re W. Mitze. The Unix System as a Software Engineering Environment.
In: Hunke (t.41. Software Engineering Environments, North-Holland Pub.
Co., Amsterdam, 1981.

9. G. Krasner. Smalltalk-80: Bits of History, Words of Advice.
Addison-Wesley Pub. Co., Reading, Massachusetts, 1983.

G-156

10. A. Goldberg. The Sanalitalk-SI Release Process. In: G. Krasner.
Siwilltalk-89: Bits Of History, Words of Advice. Addison-Wesley Pub.
Co.$ Reading, Massachubetts, 1983.

K11. D. H. H. Ingalls. The Evolution of the Snalltalk-SB Virtual machine.
in: Go Krasner. Smalltalk-80: Bits of History,, words of Advice.
Addison-Wesley Pub. Co., Reading, Massachusetts, 1983. -

G-157

UA

SDAM/15 April 1984

software design &analysis, inc.

1670 Bear Mountain Drive
Boulder, Colorado 80303

303 499 4782

Knowledge-based Systems as a Case Study
in Software Technology Maturation

William E. Riddle

ABSTRACT:

Several knowledge-based systems are routinely used in problem solving tasks
such as hardware system configuration and analysis of the chemical struc-
ture of hydrocarbons. In addition, some recent work work has demonstrated -
the utility of this technology as a basis for software envirorments. Thus,,
while this technology is not fully mature, it does provide an example of
the process by which technology is developed from infancy to general use.
The history of this technology is traced as an example of technology
maturation.

This report was prepared as part of work performed for the Department of
Defense STARS Joint Program Office by the Computer and Software Engineering
Division of the Institute for Defense Analyses.

G-158

1. Introduction and SumMary

Knowledge-based systems are software systems that provide intelligent
problem-solving assistance that goes beyond the help for mechanistic

-! activities that is typically provided. In particular, knowledge-based sys-
tems aid in the strategizing that occurs during problem solving.

The technology underlying knowledge-based systems has its heritage in
artificial intelligence, emerging as a topic in its own right in the mid-
1960's. The maturation of this technology is not yet complete but it has
developed to the point that specific systems can be prepared in a rela-
tively short time and several companies have started with the development
of knowledge-based systems as the focus of their business.

In this paper, we trace the development of this technology to provide
an example of the maturation of a general subarea within software technol-

ogy. A brief introduction to knowledge-based systems and their use in sup-
port of software development and maintenance is given in the next two sec-
tions. Then the current status of knowledge-based technology is reviewed,
followed by a history of this technology's maturation-related activities

i and a brief prognosis for the future.

2. Knowledge-based Systems

. In a very real sense, all software systems are knowledge-based since
! !they contain, in encoded form, knowledge about the problem being addressed,

the solution being developed and the solution techniques being used. The
term "knowledge-based" is used to distinguish those software systems that
automate some aspect of the strategizing that occurs during problem solv-
ing. They are different from "information-based" systems that contain
knowledge about the problem and its evolving solution, as well as the tech-
niques useful in developing a full solution. In information-based systems,
knowledge about when to do various activities and apply various techniques
resides outside-'te system itself, within the users of the system. In
knowledge-based systems, at least some of this strategy knowledge is held
within the system itself and automatically applied.

Some of the strategy-related activities that might be (at least par-
tially) automated in a knowledge-based system are:

..- determining which of several applicable techniques should be
used,,

.-- assessing the applicability of various pieces of information and
S.. . various solution techniques,

-- taking past experience intc account,

L, -- learning new strategies (that is, ways to use the techniques),

iiinnovating (that is, trying a technique even though one is not
sure that it will work or developing new solution techniques),

G-159

'I I - I -.- - --- - . , . - . - . -. - . - . -. -. - , - , - I -. . I -

S-- realizing when limits of knowledge and capability are being -

reachd• and gracefully deg:ading in performance,

_-- restructuring or abstracting the information base, and

ri ,-- eplaining the logic underlying a solution.

To date, most knowledge-based systems have addressed only the first of
these activities. In addition, the automated strategizing is most often
interactive, involving the user in making the final decision after the sys-
tem has narrowed the set of possibilities and derived information pertinent
to the final decision.

"For the most part, the development of knowledge-based systems faces
the same problems facing the development of information-based systems. A
conceptual basis for addressing a domain of problems must be developed.
Appropriate problem-solving techniques and strategies must be found and
made algorithmic. The techniques and strategies must be matured as a
result of the experienced-based wisdom that evolves from their use. Ways
of coping with limitations in capabilities must be determined. Techniques
for providing insight into the behavior of a piece of softwAre, particu-
larly a malfunctioning one, must be developed. The limitations of tradi-
"tional input/output interfaces must be surmounted. The software used in
support of problem solving must be flexible, transportable and evolvable.
And a wide variety of approaches must be captured so that individual
differences in the user community can be accommodated. Of course, for
developing knowledge-based systems all of these problems must be solved in
a slightly different way - amely, the solutions must have a higher degree
"of automatability.

There are at least three problems that seem to be unique to the
development of knowledge-based systems. One of these is knowledge
representation where the knowledge concerns the problem solving process. --

This involves not only the development of models of problem solving activi-
ties but also the preparation of problem and solution models that provide
for a multiplicity of views at various levels of abstraction. Another
problem that is relatively unique to the knowledge-based system arena is
automated or computer-assisted knowledge acquisition, involving the drawing
of inferences about problem-solving strategies from a record of a problem- -

solving activity and associated information. The third relatively unique
problem is the development of approaches to handling "wrong" solutions --
for example, a good way to focus in on a solution is to consider incorrect
solutions and determine why they are inadequate.

A good deal of literature has recently appeared on knowledge-based
systems; (1] and [2] give particularly good treatments of this area and
extensive references to both general literature and articles on specific
topics or problems.

3. Knowledge-based Software Envirornments

The use of knowledge-based technology as a basis for environments sup-
S |-' porting the development and maintenance of software systems is relatively

new. (3] gives a good discussion of the prospects and focus of this

G-160

_- - -. A:i

approach to software environments.

Knowledge-based support for the software process (that is, the
development and maintenance of software) can be understood by thinking of
of the process as being carried out by a community of interacting agents,V each having their own area of capaility and expertise. One agent, for
example, would be a compiler that receives information in the form of a
source program and delivers new information in the form of an equivalent
object program. Another agent would be a human who receives information in

the form of test results and delivers new information in the form of
error-correcting changes.

K ~The intent of an automated software environment is to computerize the
individual agents as much as possible. The intent of a knowledge-based
automated software environment is te extend the scope of automation to
those agents that perform feats of inference and logic that are well beyond
what can currently be automated (for example, the inferences of changes to
correct errors) or within the domain of strategic rather than mechanistic
activities (for example, the choice of implementing storage structures).
It is not the intent to totally automate the production and maintenance of
software - the critical need to keep the human "in the loop" at all levels
of activity is well recognized.

4. Current Status

While the application of knowledge-based technology in support of the
soft'ware process is still immature, progress has been made in several other
application areas. Thus, we can get an idea of the maturation of this
technology by considering it in general. In this section, we give a quick
synopsis of the current state of the art and follow that, in the next sec-
tion, with an accounting of some of the major events in the history of this
technology. W.-.

--- ;A current-day knowledge-based system is typically composed of two
major parts. First, there is the knowledge base which holds both the "pas-
sive" information about the problem and its evolving solution and the
"active" information describing solution techniques and strategies.
Second, there is the "user" of this information which can be thought of as
a control program that uses the active knowledge to guide the transforma- _,.
tion of the passive knowledge and move closer to a solution. Basically,
the active knowledge provides "programs" for the various agents and the

- - "user" segment of the system is an interpreter of these programs.

" -Most current knowledge-based systems encode the information about what
a technique or strategy entails in the form of inference rules that specify _.
actions to be taken whenever some specified Zondition 7`67s. In many

- -, cases, these rules are encoded in the description of the "user" segment of
"the system - otherwise, they appear as data in the active portion of the
knowledge base. A severe problem at the current time, and a strong impedi-
ment to major progress, is understanding how to make the "user" a pure

Sinterpreter that, in and of itself, does not contain information about
• _ __ ~techniques and strategies. i"

S'For the most part, the rules are hand encoded and capture the

i .G-161

accumulated experience and abilities of some human problem solver. In a
few cases, the rules capture the experiences and abilities of a larger comn-

* munity of problem solvers but it is infrequent that the experiences and
abilities of more than a hand full of "experts" are captured in a
knowledge-based system. Current systems attend almost exclusively to the
partial automation of the choice of techniques and few, if any, have any
capabilities for carrying out the other problem-solving activities cited
above.

The scope of current knowledge-based systems is generally fairly nar-
row. most are very specific to particular applications but, none the less,

* contain parts that can be used in systems for other applications. A major
goal is to localize problem domain information so that more general systems
are available.

Knowledge-based systems are being actively and routinely used in
several application areas. The most frequently cited areas are hydrocarbon
structure analysis and computer hardware configuration. Other areas are
geological exploration, speech recognition and lung disease diagnosis.

5. A Bit of History

Much of the heritage of knowledge-based systems is in the area of
artificial intelligence (AI) and continuing developmient of this technology
is integrally related to on-going work in AI. The chronology for
knowledge-based technology is therefore almost identical to that of AI up
until the early 1970's when the specifics of knowledge-based systems became
a focus of attention in their own right.

The following gives a quick synopsis of this chronology. It comes
primarily from historical reviews (perhaps the best being [4]) and from the
personal experiences of the author who is not a researcher or worker in the
knowledge-based area. While the dates for major steps are approximately
correct, many more examples of perhaps better work could be cited.

* prior to late-1960's: Artificial intelligence is a subject of active
work from the very beginning of the computer era. Gradually over
the years, the emphasis switches from doing intelligent tasks,
like playing chess or checkers, to doing tasks intelligently,-
namely in much the same manner as a human would do them including
the making of errors.

late-1960's: Early instances of "expert" systems appear, such as the
Dendral system that aids in the analysis of the chemical struc-
Lure of hydrocarbons. These provide intelligent assistance to
human problem solvers and have the ability to solicit information
that can be used in future problem-solving situations.

1973-74: Systems appear that separate the base of knowledge from the
actions that work on and transform the knowledge, for example,
the Hearsay speech recognition system at Carnegie-Mellon Univer-
sity.

G-162

-. 7IN W.

1975: Articles start to appear on the "engineering" of knowledge- -

based systems.

1979: The effort needed to produce knowledge-based systems is down to
~ iabout eight person years as opposed to more than 40 person years

.., in the late 1960's. This can be partially attributed to an accu-
mulation of ideas, code and experience. It can also be attri-
buted to an increased understanding of the areas for which
"knowledge-based systems are most appropriate and most achievable.

1979-80: Several systems, for example Puff for lung disease diagnosis
- .i._! and R1 for hardware configuration, have matured to the point that

-they can be routinely used.

"1981: The Japanese announce a major ten-year software technology pro-
gram (2]. The major attention of the program is upon hardware to
support inference computations and the software part of the pro-
gram centers around the language Prolog. The program is there-
fore indirectly oriented toward knowledge-based systems.

1982: The Japanese indicate that the initial expectations for their
program's results are probably too high but that they will gain a
great deal of expertise and a number of side effects by striving
for the announced goals of their Fifth Generation Computer pro-
"j"ect.

SIearly-1980's: Companies are started in the United States to develop
knowledge-based systems. These companies interview expert(s) in
a proposed application area and construct a knowledge-based sys-
ten for the application area. (Data are not available as to the
success of these companies but they continue to thrive and do
business.)

From this chronology, we can conclude that it took about eight years, from
roughly 1965 to 1973, for the basic concepts underlying knowledge-based

. msystems to emerge after the initial conception of these sorts of systems.
Another six to seven years was needed to achieve usable capabilities. With
the advent of the Japanese program and the appearance of companies based on
knowledge-based system technology, the area has matured significantly but

! •has not yet been widely extended in scope or usage.

6. Summary Remarks

I I kSeveral systems based on knowledge-based technology are routinely used
in problem solving tasks that are amenable to the inference-based approach -A
that is currently most well-developed. And some impressive work has been

o .• :done that demonstrates the utility of this technology as a basis for

But it will be quite a while before the technology, or environments
based on it, are in common use within the software practitioner community. --
In fact, it appears that the best way to utilize the technology in the near
future is to have "centers of excellence" where people experienced in and
well-acquainted with knowledge-based technology can apply it and develop

L G-163

systems based on it. It is not clear whether or when the technology will

become widely and commonly used within the software practitioner coa~munity. - -

REFERENCES

[l) A. Barr and E. Feigenbaum. The Handbook of Artificial Intelligence,
Vol. 2. William Kaufman, Inc., Los Altos, California, 1982.

[21 E. Feigenbaum and P. MtCorduck. The Fifth Generation. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1983.

[31 R. Balzer, T. Cheatham and C. Green. Software Technology in the
1990's: Using a New Paradigm. Computer, 16, 11 (November 1983), 39-
45.

[4] Randell Davis. Expert Systems: Where are We? and Where Do We Go From
Here? A.I. Memo No. 665, Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, June
1982.

[5] R. Balzer. Invited Talk and Demonstration at the ACM Sigsoft/Sigplan
Software Engineering Symposium on Practical Software Development
Environrments, Pittsburgh, Pennsylvania, April 1984.

c-164

SDAM/16 April 1984

software design & analysis, inc.

1670 Bear Mountain Drive
Boulder, Colorado 80303

303 499 4782

Abstract Data Types as a Case Study

in Software Technology Maturation

i .

William E. Riddle

ABSTRACT:

The history of the abstract data type concept is traced as an example of
.! how basic, conceptual software technology matures and contributes to the

maturation of other software technologies.

. A
4A-

This report was prepared as part of work performed for the Department of

Defense STARS Joint Program Office by the Computer and Software EngineeringDivision of the Institute for Defense Analyses.

L• G-165

SI

1.Introduction • •

Abstract data types allow the natural and convenient separation of
concern for an object's behavior from concern for its implementation. The
concept emerged in the mid-1960's as part of the general "fountain" of
ideas that are now fundamental to modern software technology. Since its
emergence, the concept of abstract data types has matured to the point that
it is commonly found in modern programming languages and has been critical
to the development of other software technologies.

The basic concept of abstract data types is briefly explained in the
nPwt section in terms of the how it contributes to modern programming
languages. Then a short history is given, followed by a short a3sessment
of the current state of this techuology and some predictions for its
further propagation throughout the practitioner community.

2. Abstract Data 3 os

All programming languages provide a pre-defined set of data types and
define a set of operations that can operate on these data types. For exam-
ple, all scientific programrning languages provide an array data type and at
least the operation of selection of an array element by indexing and
perhaps more sophisticated operations such as matrix algebra operations.
An important point is that the user of the language does not know how the
data types and associated operations are implemented -- the user's atten-
tion is focused on how the data type can be used rather than the details of -. .
how it is realized.

Abstract data types, as found in programming languages, are an exten-
sion of this idea to higher level data structures. Rather than predefine
various higher level types, the user is provided with the ability to ,
separately define two aspects of a type of data. First, the existence of -
the new type and the operations that can be done on it can be defined.
Second, the representation used to implement instances of the type and the
procedures used to implement the operations can be defined. Separate
definition of these two aspects allows the use of instances of a high-level
data type to depend only upon the type's external definition that spells
out the operations that can be performed and how these operations behave.
It also allows the implementation details to be encapsulated and hidden,
providing the potential for being able to change them without disturbing -"

the details of how they are used as long as the new representations and
"implementations continue to provide the behavior that is "advertised" by
the external description. -

3. A Bit of History

The ideas underlying abstract data types emerged in the mid-1960's and
the technology has been developed to the point that abstract data types are
part of most modern programming languages and have been used as a critical
concept in other software technologies. Sane of the time points in this
history are:

G-166

IL

-i -' 2.•~ .

071

-- mid-1960's: the concepts of classes and objects emerge as part
of the Simula language

-- 1968: the concept of information hiding, key to the idea of
abstract data types, is developed by Parnas and discussed in
several technical reports

i- 1973: software development support systems appear that provide .
the ability to describe an object's behavior separately from the
description of its implementation; at least one of these (TOPD)
has its heritage in the Simula ideas of classes and objects; at
least one other (HDM) is directly built upon the ideas developed

,i by Parnes in his further work on information hiding; despite the
variety of roots for these systems, they have essentially the
same corceptual basis, a rudimentary form of abstract data types

.- mid-1970's: programming languages intended for the production of
formally verified programs appear; these also contain preliminary
versions of abstract data type facilities

-- 1977: Liskov and Zilles prepare a definitive article on the sub-
ject which is published in the premiere issue of IEEE Transac-

S* tions on Software Engineering the following year; this paper,
among other things, establishes a link between abstract data
types and axiomatic specification

i late-1970's: usable programming languages that include the

"notion of abstract data types appear; most notable among them is
Ada

late-1970's: approaches to formal verification that rely on
axiomatic specification are worked out

"i 1980: the Affirm system is operational; it relies on the con-
cepts of axiomatic specification of abstract data types for much
of it analysis of programs

4. Summary

- The ideas of encapsulation and external description have been well
1 received within the research and development community. They have been

extensively developed and included in several other technol(.gies such as
programming languages and verification systems, much to the benefit of

- these other technologies. J.•

Despite their extensive development and rather wide-spread application
in other technologies, abstract data types are used by a relatively small
proportion of the practitioner comnunity. Primarily this is because of the
lack of wide-spread use of modern programning languages that contain the
concept of abstract data types. It appears that the further propagation of
this technology is, at the moment, intimately linked to the more extensive
use of modern programming languages.

Ir

G-167

TJ~eiSGU EW DSV~kMuat and Traninw of SCR Jf&kthdMo

David Welin

Naval RaSearob Laboratory

Febrary 1984j

G-161

TINELINK FOR DV lOPNlT AND TRANHSFR OF OCR METHODOLOGY

The following timeline shows key points in the development
and transition of the Software Cost Reduction (SCR) project soft-
ware development methodology. The reader should keep in mind
that the SCR project is an attempt to refine and apply a combina-
tion of previously-suggested software development techniques.
These techniques include information hiding, abstract interfaces,
cooperating sequential processes, abstract data types, virtual

machines, formal specification, program families, and undesired
event (UE) specification. During the course of the project,
some major new techniques have been developed and applied when

no existing technique seemed suitable. Included are a new tech-
nique for software requirements specification and a new technique L.
for specifying program semantics, along with its application to
a new programming control structure.

To demonstrate the application of the SCR methodology, the
operational flight program (OFP) for the Navy's A-7E aircraft is
being redeveloped using the methodology. The OFP is a complex
computer program that runs on the TC-2 computer on-board the
aircraft.

The timeline is divided into two parts, the first representing .1
events prior to the start of SCR that influenced the choice of
techniques to be used by SCR. The second part represents events
of interest subsequent to the start of SCR. Intervals on the
timeline are measured in years. Points that appear prior to the

S.' start of the project represent one of the following:

1. The publication of papers in the technical literature
describing or discussing new techniques later used in
the SCR project.

2. The appearance of courses and tutorials discussing new
. techniques later used in the SCR project.

3. Completion of earlier demonstration projects showing
the feasibility of new techniques without providing
complete models. Points that appear after the start

G-169

S_- . -

of the project represent one of the following:

1. Completion of the development of a new technique
or the refinement of an existing technique or
combination of techniques. Included are model
documents that provide an example of the application
of the technique(s).

2. Publication in the technical literature of an
exposition of the technique(s).

3. Completion of a subset of the OPP. Included is
testing of the subset on the TC-2 simulator at
the Naval Weapons Center. Such timeline points
represent the completion of engineering models,
"and are of particular interest because the models
include both tested code and the documentation
used to develop and needed to maintain the code.

4. Completion of development of tools used in support
of the SCR methodology.

5. Transfer of a subset of the SCR methodology, such
as the requirements specification technique, to
other projects.

I i The SCR methodology demonstration is considered completed

"when the engineering model corresponding to the entire A-7E (OFP)

passes the same operational tests used to qualify existing A-7E .J

OFPs for fleet service.

G-170

i|G-l7_

S I I

1968 First paper in technical literature on cooperating sequential

processes.

1969

1970

1971

1972 First paper in technical literature on information hiding.

1973 1974 In-house working-papers describing UE handling.

1975 Early technical report on program families.

1976 First presentation of NRL software engineering course describ-

ing information hiding, program families, formal specification,

UE specification and handling, abstract interfaces, and cooperating

sequential processes.

Completion of in-house project demonstrating feasibility of

program family and information hiding techniques in the development

of a small simulator.

Timeline Part 1: Events Of Interest Prior To Start of SCR

G-171

:iiiii L: :.ft

1977 Start of Software Cost Reduction project - 6.1 phase.
e... -

1978 Requirements specification technique developed and model

document published.

_ 1979 Start of Software Cost Reduction project -6.2 phase.

1980 Description of requirements specification technology published

in technical journal. Abstract interface technique refinement

completed and model document produced.

1981 Description of abstract interface technology presented at

technical conference. Information hiding technique refinement

completed and model document produced.

1982 Requirements specification technology in use by other projects

and organizations*.

1983 First engineering model tested at NWC. Techniques used in
the development of the model included information hiding, U.
specification and handling, requirements specification, program

families, virtual machines, and abstract interfaces.

SiCompletion of initial support tools set. Tools included

are those needed to support development and testing of the first
engineering model.

Timelilne Part 2: Events of Interest Subsequent To Start Of SCR

* Examples of other projects and organizations are: Bell
Telephone Laboratories, NWC A-7 project, NWC/Grumman A-6E project,
Air Force A-7 project, NUSC-Newport/SOFTECH Trident Emergency
Preset System, Braun Bovieri.

G-172

* -. -~ . - 7 - - - - - - -:1 - 7-

8CR PUBLISHED PRODUCTS TO MARCH 1984

SOFTWARE REQUIREMENTS SPECIFICATION

Heninger, K., Kallander, J., Parnas, D., and Shore, J.1
Software Requirements for the A-7E Aircraft; NRL Memorandum
Report 3876; 27 November 1978. Release 5 in preparation.

Heninger, K. L.; "Specifying Software Requirements for Complex
Systems: New Techniques and their Application", IEEE Trans.
Software Engineering, vol. SE-6, pp. 2-13, Jan. 1980.

MODULARIZATION OF A COM1PLEX SOFTWARE SYSTEM

Britton, K. H., and Parnas, D. L.1 A-7E Software Modul'e
Guide, NEL Memorandum Report 4702p December 1981. Release

V ~2 in preparation. Clements# Parnas, Weiss; "Enhancing Reusa-r ~bility with Information Hiding", Proceedings, Wo~rkshop on
Reusability in Programming, sponsored by ITT Programming,

V~ 7-9 September 1983.

Clemenits, Parnas, Weiss; "The Modular Structure of Complex
Systems," Seventh International Conference on Software Engineer--
ing, March, 1984

ABSTRACT INTERFACE DESIGN

Britton, K. H., Parker, R. A., and Parnas, D. L.; "A Procedure
for Designing Abstract Interfaces for Device Interface Modules",
Proceedings, Fifth International Conference on Software
Engineering, 1981.

Clements, Faulk, Parnas; Interface Specifications for the
SCR (A-7E) Application Data Types Module; NRL Report 8734;
23 August 1983. .

* Parker, A., Heninger, K., Parnas, D., and Shore, J.; Abstract
Interface Specifications for the A-7E Device Interface Module;
NRL Memorandum Report 4385; 20 November 1980. Release 4 in
preparation.

Britton, Clements, Parnas, Wei3S; Interface Specifications
for the A-7E (SCR) Extended Computer Module; NRL Memorandum
Report 4843, Jan 1983. Release 6 released 4 December 1983.

Clements, P.C.; Function Specifications for the A-7E Function

G-173

Driver Modulej NRL Memorandum Report 4658, October 1981.

Clements, P.C.; Interface Specifications for the A-7E Shared
) kServices Module; NRL Memorandum Report 4863, 8 September
' '1982.

; REAL-TIME PROCESS SYNCHRONIZATION

Faulk, Parnasl "On the Uses of Synchronization in Hard Real-
Time Systems", Proceedings, 1983 IEEE Real-Time Systems
"Symposium, 6-8 December, 1983.

A NEW CONTROL CONSTRUCT FOR AVIONICS COMPUTER SOFTWARE

Parnas, D. L.; An Alternative Control Structure and Its
Formal Definition Technical Report FSD-81-0012, Federal
Systems Division, IBM Corporation, Bethesda, MD., 1981.

G-17

I Nm .- , * . * .-

TEST PROCEDURES

Clements, Parnas, *SCR Testing Guidelines"# Technical--
M1emorandums draft 2 October 1983.

G-176

i .'9"-

DISTRIBUTION LIST FOR PAPER P-1788

[•CPT David Boslaugh
S2221 Jefferson Davis Highway, Rm. #944
Arlington, VA 22202

Paul Clements
Naval Research Laboratory

• -. Code 7595
S ; Ccnputer Science and Systems Branch

Washington, DC 20375

--- - Charles Colello
Plans and Programs Division
Rm 1D679, Pentagon
Washington, DC 20310

LTC Harrington
r ~HQ AFLC/t44EC

Wright Patterson AFB, Ohio 45433

"Jim Hess

"9N23 AMC
5001 Eisenhower Ave.
Alexandria, VA 22333

John Leary
STARS Joint Program Office
400 Army Navy Drive, 9th Floor
Arlington, VA 22202

iEdward Lieblein
OUSDE/,&AT (CSS)
400 Army Navy Dr., 9th Floor
Arlington, VA 22202

LTC Vance Mall
OUSDRE/CSS
400 Army Navy Drive, 9th Floor
Arlington, VA 22202

Robert F. Mathis (25 copies)
Director, AJPO
400 Army Navy Drive, 9th Floor
Arlington, VA 22202

l Carol Morgan
400 Army Navy Drive, 9th Floor
Arlington, VA 22202

-n m i [. -9--

LJTC Mote
HO Air Force Systems Commuiand
Office Code ALR
Bldg. 1535 Rmu. EE205
Andrews AFB, MD 20334

COL Ken Nidiffer
HO Air Force Systems CcmnuandK: Office Code ALR
Bldg. 1535 Rm. EE205
Andrews AFB, MD 20334

Jim Riley
* HQ AFSC/DLA

Andrews AFB, MD 20334

Dick Stanley
STA4RS Joint Program Office
400 Army' Navy Drive, 9th FloorLArl ington, VA 22202

Hank Stuebing
Code 5OC
NALVAIR DEVCEN
Warminster, PA 18974

David Weiss
Naval Research Lab
Code 7592
Ccuiputer Science and Systems Branch
Washington, DC 20375

Other

Betsey Bailey
400 N. Cherry street

* Fills Chuirch, VA 22046

John Bailey
400 N. Cherry Street
Falls church, VA 22046

Barry Boehm
TRW Defense Systems Group
MS R2-1076

L One Space Park
Redondo Beach, CA 90278

Bill Carlson
Intermetrics
"4733 Bethesda Avenue, Suite 415
Bethesda, MD 20814

Ruth Davis
The Pymatuning Group, Inc.
2000 L St., N.W., Suite 702
Washington, DC 20036

Richard DeMillo
Georgia Institute of Technology
School of Inf. and Ccmputer Science
Atlanta, GA 30332

SLarry E. Druffel
Rational Machines

Mountain View, CA 94043

"Frank McGarry
NASA/GSFC
Code 582 -
Greenbelt, MD 20771

John Manley
Computing Technology Transition, Inc.82 Concord Drive '•.i
Madison, CT 06443 -

Ann Marmor-Squires
TRW
Software Development Lab
2751 Prosperity Ave.
Fairfax, VA 22031

Ronnie J. Martin
School of Information & Computer Science
Georgia Institute of Technology
"Atlanta, GA 30332

Don Philpot
Software Engineering Technology Corporation
197 Montgomery Rd. MC3
Altamonte Springs, FL 32714

Defense Technical Information Center - (12 copies)
L Cameron Station

Alexandria, VA 22314

C -.

-. '. . , O V- ,-.

William Riddle
Software Design and Analysis
1670 Bear Mountain Dr.
Boulder, CO 80303

DoD-I[Y Management Office
1801 N. Beauregard St.
Alexandria, VA 22311 ,-" "

IL

Ms. Louise Becker
Mr.* Matthew Berler
Mr. J. Frank Campbell
Dr. Jack Kramer
Ms. Sarah N•ash
Dr. Thoaas H. Probert
1Mr. Samuel T. Redwine, Jr.
Mr. John Salasin
Dr. Mark•o M. Slusarczuk
Mr. E. Ronald Weiner
Ms. Carol Powell - (2 copies)

I-- !"-' ---

Lm ;-

